Example #1
0
      virtual void AddNode(const TGeoVolume *vol, Int_t copy_no, TGeoMatrix *mat, Option_t* = "") {
        TGeoMatrix *matrix = mat;
        if (matrix == 0)
          matrix = gGeoIdentity;
        else
          matrix->RegisterYourself();
        if (!vol) {
          this->T::Error("AddNode", "Volume is NULL");
          return;
        }
        if (!vol->IsValid()) {
          this->T::Error("AddNode", "Won't add node with invalid shape");
          printf("### invalid volume was : %s\n", vol->GetName());
          return;
        }
        if (!this->T::fNodes)
          this->T::fNodes = new TObjArray();

        if (this->T::fFinder) {
          // volume already divided.
          this->T::Error("AddNode", "Cannot add node %s_%i into divided volume %s", vol->GetName(), copy_no,
                         this->T::GetName());
          return;
        }

        TGeoNodeMatrix *node = new DD_TGeoNodeMatrix(vol, matrix);
        //node = new TGeoNodeMatrix(vol, matrix);
        node->SetMotherVolume(this);
        this->T::fNodes->Add(node);
        TString name = TString::Format("%s_%d", vol->GetName(), copy_no);
        if (this->T::fNodes->FindObject(name))
          this->T::Warning("AddNode", "Volume %s : added node %s with same name", this->T::GetName(), name.Data());
        node->SetName(name);
        node->SetNumber(copy_no);
      }
Example #2
0
template <> void AlignmentActor<DDAlign_standard_operations::node_reset>::operator()(Nodes::value_type& n) const  {
  TGeoPhysicalNode* p = n.second.first;
  //Entry*            e = n.second.second;
  string np;
  if ( p->IsAligned() )   {
    for (Int_t i=0, nLvl=p->GetLevel(); i<=nLvl; i++) {
      TGeoNode* node = p->GetNode(i);
      TGeoMatrix* mm = node->GetMatrix();  // Node's relative matrix
      np += string("/")+node->GetName();
      if ( !mm->IsIdentity() && i > 0 )  {    // Ignore the 'world', is identity anyhow
        GlobalAlignment a = cache.get(np);
        if ( a.isValid() )  {
          printout(ALWAYS,"AlignmentActor<reset>","Correct path:%s leaf:%s",p->GetName(),np.c_str());
          TGeoHMatrix* glob = p->GetMatrix(i-1);
          if ( a.isValid() && i!=nLvl )   {
            *mm = *(a->GetOriginalMatrix());
          }
          else if ( i==nLvl ) {
            TGeoHMatrix* hm = dynamic_cast<TGeoHMatrix*>(mm);
            TGeoMatrix*  org = p->GetOriginalMatrix();
            hm->SetTranslation(org->GetTranslation());
            hm->SetRotation(org->GetRotationMatrix());
          }
          *glob *= *mm;
        }
      }
    }
  }
}
Example #3
0
void alignment_reset_dbg(const string& path, const Alignment& a)   {
  TGeoPhysicalNode* n = a.ptr();
  cout << " +++++++++++++++++++++++++++++++ " << path << endl;
  cout << "      +++++ Misaligned physical node: " << endl;
  n->Print();
  string np;
  if ( n->IsAligned() ) {
    for (Int_t i=0; i<=n->GetLevel(); i++) {
      TGeoMatrix* mm = n->GetNode(i)->GetMatrix();
      np += "/";
      np += n->GetNode(i)->GetName();
      if ( mm->IsIdentity() ) continue;
      if ( i == 0 ) continue;

      TGeoHMatrix* glob = n->GetMatrix(i-1);
      NodeMap::const_iterator j=original_matrices.find(np);
      if ( j != original_matrices.end() && i!=n->GetLevel() )   {
        cout << "      +++++ Patch Level: " << i << np << endl;
        *mm = *((*j).second);
      }
      else  {
        if ( i==n->GetLevel() ) {
          cout << "      +++++ Level: " << i << np << " --- Original matrix: " << endl;
          n->GetOriginalMatrix()->Print();
          cout << "      +++++ Level: " << i << np << " --- Local matrix: " << endl;
          mm->Print();
          TGeoHMatrix* hm = dynamic_cast<TGeoHMatrix*>(mm);
          hm->SetTranslation(n->GetOriginalMatrix()->GetTranslation());
          hm->SetRotation(n->GetOriginalMatrix()->GetRotationMatrix());
          cout << "      +++++ Level: " << i << np << " --- New local matrix" << endl;
          mm->Print();
        }
        else          {
          cout << "      +++++ Level: " << i << np << " --- Keep matrix " << endl;
          mm->Print();
        }
      }
      cout << "      +++++ Level: " << i << np << " --- Global matrix: " << endl;
      glob->Print();
      *glob *= *mm;
      cout << "      +++++ Level: " << i << np << " --- New global matrix: " << endl;
      glob->Print();
    }
  }
  cout << "\n\n\n      +++++ physical node (full): " << np <<  endl;
  n->Print();
  cout << "      +++++ physical node (global): " << np <<  endl;
  n->GetMatrix()->Print();
}
//__________________________________________________________________________
Bool_t BuildFieldMap(const TGeoHMatrix& matrix)
{
   // Create a Uniform Magnetic field and write it to file
   string filename = "runs/polarisation/guide_tube/C8=9 A +SQUIDs Coil =26_4 mA +D1=2 A + 6WS TC guide tube -100 z +80 cm.txt";
   // Define shape of field
   TGeoShape* magFieldShape = new Box("FieldShape",0.031, 0.031, 3.0);
   // Define transformation that locates field in geometry
   TGeoMatrix* magFieldPosition = new TGeoHMatrix(matrix);
   magFieldPosition->Print();
   MagFieldMap* field = new MagFieldMap("Field", magFieldShape, magFieldPosition);
   if (field->BuildMap(filename) == kFALSE) {
      Error("BuildFieldMap","Cannot open file: %s", filename);
      return kFALSE;
   }
   // Add field to magfield manager
   MagFieldArray* magFieldArray = new MagFieldArray();
   magFieldArray->AddField(field);
   
/*   // Elec Field
   // Define shape of field
   TGeoShape* elecFieldShape = new Tube("SolenoidFieldShape",hvCellRMin, hvCellRMax, hvCellHalfZ);
   // Define transformation that locates field in geometry
   TGeoMatrix* elecFieldPosition = new TGeoHMatrix(matrix);
   TVector3 elecFieldStrength(hvCellEx, hvCellEy, hvCellEz);
   ElecField* elecField = new UniformElecField("ElectricField", elecFieldStrength, elecFieldShape, elecFieldPosition);
   // Add field to electric field manager
   ElecFieldArray* elecFieldArray = new ElecFieldArray();
   elecFieldArray->AddField(elecField);
*/   
   // -- Write magfieldmanager to geometry file
   const char *magFileName = "geom/fields.root";
   TFile *f = TFile::Open(magFileName,"recreate");
   if (!f || f->IsZombie()) {
     Error("BuildFieldMap","Cannot open file: %s", magFileName);
     return kFALSE;
   }
   magFieldArray->Write(magFieldArray->GetName());
//   elecFieldArray->Write(elecFieldArray->GetName());
   f->ls();
   f->Close();
   delete magFieldArray;
//   delete elecFieldArray;
   magFieldArray = 0;
//   elecFieldArray = 0;
   return kTRUE;
}
/**
 * Calculate effective radiation length traversed by particle traveling between two points
 * along straight line.
 * 
 * Calculation is done according to the eq. (27.23)
 * @see http://pdg.lbl.gov/2006/reviews/passagerpp.pdf
 * 
 * @param globalPosStart starting point in the global coordinate system
 * @param globalPosFinish ending point in the global coordinate system
 * @param skipBoundaryVolumes if true subtract rad length of the volumes containing start and finish points
 * 
 * @return radiation length in units of X0
 */
float EUTelGeometryTelescopeGeoDescription::findRadLengthIntegral( const double globalPosStart[], const double globalPosFinish[], bool skipBoundaryPonitsVolumes ) {

    streamlog_out(DEBUG1) << "EUTelGeometryTelescopeGeoDescription::findRadLengthIntegral()" << std::endl;
    
    float rad = 0.;        // integral of radiation length in units of X0
    
    const double mm2cm = 0.1;
    
    /* TGeo uses cm and grams as internal units e.g. in radiation length and density. Telescope/LCIO uses mm. Therefore this routine is full of 
     annoying conversion factors */    
    
    const double stepLenght2 = ( globalPosFinish[0] - globalPosStart[0] )*( globalPosFinish[0] - globalPosStart[0] ) +
                               ( globalPosFinish[1] - globalPosStart[1] )*( globalPosFinish[1] - globalPosStart[1] ) +
                               ( globalPosFinish[2] - globalPosStart[2] )*( globalPosFinish[2] - globalPosStart[2] );
    
    const double stepLenght  = TMath::Sqrt( stepLenght2 );

    // don't need conversion factor to for calculation of directions
    const double xp  = ( globalPosFinish[0] - globalPosStart[0] )/stepLenght;
    const double yp  = ( globalPosFinish[1] - globalPosStart[1] )/stepLenght;
    const double zp  = ( globalPosFinish[2] - globalPosStart[2] )/stepLenght;

    streamlog_out(DEBUG0) << "Start point (x,y,z):" << globalPosStart[0] << "," << globalPosStart[1] << "," << globalPosStart[2] << std::endl;
    streamlog_out(DEBUG0) << "Finish point (x,y,z):" << globalPosFinish[0] << "," << globalPosFinish[1] << "," << globalPosFinish[2] << std::endl;
    streamlog_out(DEBUG0) << "Direction (nx,ny,nz):" << xp << "," << yp << "," << zp << std::endl;
    
    double snext;
    double pt[3], loc[3];
    double epsil = 1.E-7;
    double lastrad = 0.;
    int ismall       = 0;
    int nbound       = 0;
    float length     = 0.;
    TGeoMedium *med;
    TGeoShape *shape;
    
    // Get starting node
    gGeoManager->InitTrack( globalPosStart[0]/*mm*/, globalPosStart[1]/*mm*/, globalPosStart[2]/*mm*/, xp, yp, zp );
    TGeoNode *nextnode = gGeoManager->GetCurrentNode( );
    
    double currentStep = stepLenght /*mm*/;
    // Loop over all, encountered during the propagation, volumes 
    while ( nextnode ) {
        med = NULL;
        
	// Check if current point is inside silicon sensor. Radiation length of silicon sensors is accounted in thin scatterers of GBL.
        bool isBoundaryVolume = false;
        if ( gGeoManager->IsSameLocation( globalPosStart[0], globalPosStart[1], globalPosStart[2] ) ||
             gGeoManager->IsSameLocation( globalPosFinish[0], globalPosFinish[1], globalPosFinish[2] ) ) isBoundaryVolume = true;
        
        if ( nextnode ) med = nextnode->GetVolume()->GetMedium();
        else return 0.;
        
        shape = nextnode->GetVolume()->GetShape();
        
        // make a step to the next intersection point
        if ( currentStep > 1.e-9 /*mm*/ ) nextnode = gGeoManager->FindNextBoundaryAndStep( currentStep /*mm*/ );
        else return rad;
        
        snext  = gGeoManager->GetStep() /*mm*/;
        
        // Small steps treatment
        if ( snext < 1.e-8 /*mm*/ ) {
            ismall++;
            
            // Terminate calculation if too many small steps done
            if ( ismall > 3 ) {
                streamlog_out( WARNING1 ) << "ERROR: Small steps in: " << gGeoManager->GetPath() << " shape=" << shape->ClassName() << endl;
                return rad;
            }

            // increase step size (epsilon) and advance along the particle direction
            memcpy( pt, gGeoManager->GetCurrentPoint(), 3 * sizeof (double) );
            const double *dir = gGeoManager->GetCurrentDirection();
            for ( Int_t i = 0; i < 3; i++ ) pt[i] += epsil * dir[i];
            snext = epsil;
            length += snext;
            
            // Ignore start and finish volumes if required
            if ( skipBoundaryPonitsVolumes && isBoundaryVolume ) {
                rad += 0.;
            } else {
                rad += lastrad*snext;
            }
            
            gGeoManager->CdTop( );
            nextnode = gGeoManager->FindNode( pt[0], pt[1], pt[2] );    // Check if particle is crossed the boundary
            if ( gGeoManager->IsOutside() ) return rad;                 // leave if not
            TGeoMatrix *mat = gGeoManager->GetCurrentMatrix();          
            mat->MasterToLocal( pt, loc );
            if ( !gGeoManager->GetCurrentVolume()->Contains( loc ) ) {
                gGeoManager->CdUp();
                nextnode = gGeoManager->GetCurrentNode();               // move to new volume
            }
            continue;
        } else {
            ismall = 0;
        }
        
        // Normal steps case
        nbound++;
        length += snext;
        currentStep -= snext;
        if ( med ) {
            double radlen = med->GetMaterial()->GetRadLen() /*cm*/;
            if ( radlen > 1.e-9 && radlen < 1.e10 ) {
                
                lastrad = 1. / radlen * mm2cm;
                
                // Ignore start and finish volumes if required
                if ( skipBoundaryPonitsVolumes && isBoundaryVolume ) {
                    rad += 0.;
                } else {
                    rad += lastrad*snext;
                }
                
            } else {
                lastrad = 0.;
            }
            streamlog_out( DEBUG0 ) << "STEP #" << nbound << std::endl;
            streamlog_out( DEBUG0 ) << "   step[mm]=" << snext << "   length[mm]=" << length
                    << " rad[X0]=" << snext * mm2cm / radlen << " " << med->GetName( ) 
                    << " rho[g/cm^3]=" << med->GetMaterial()->GetDensity() <<" radlen[cm]=" << radlen << " Boundary:" << (isBoundaryVolume?"yes":"no")
		    << std::endl;
        }
    }
    
    streamlog_out(DEBUG1) << "--------EUTelGeometryTelescopeGeoDescription::findRadLengthIntegral()--------" << std::endl;
    
    return rad;
}