Example #1
0
void GetGraphs(const vector <TStr>& Parameters, const TStr& ModelGen, const TStr&ModelPlt)
{
    PNGraph G;
    size_t PSize = Parameters.size();
    if (GRAPHGEN >= PSize || MTXGEN >= PSize || KRONGEN >= PSize || KRONFIT >= PSize)
        Error("GetGraphs", "Wrong index in array of parameters");

    GetModel(Parameters[GRAPHGEN], G);

    if (G->GetNodes() == 0)
        Error("GetGraphs", "Empty graph");

    TFltPrV MDegIn, MDegOut;
    TSnap::GetInDegCnt(G, MDegIn);
    TSnap::GetOutDegCnt(G, MDegOut);

    PlotDegrees(Parameters, MDegIn, MDegOut, "model");
    TFile << "Model nodes: " << G->GetNodes() << ", model edges: " << G->GetEdges() << endl;
    TFile << "Maximum output degree in model graph: " << MDegOut[MDegOut.Len()-1].GetVal1() << endl;
    TFile << "Maximum input degree in model graph: " << MDegIn[MDegIn.Len()-1].GetVal1() << endl;


    if (ModelGen == "model+kron"){
        // generate (or read) Kronecker initiator matrix
        TKronMtx FitMtxM;
        if (!GetMtx(Parameters[MTXGEN], FitMtxM))
            GenNewMtx(G, Parameters[KRONFIT], FitMtxM);
        PrintMtx(FitMtxM, TFile);
        TFile << "Scaling for the number of edges... " << endl;
        FitMtxM.SetForEdges(G->GetNodes(), G->GetEdges());

        int ModelNodes = G->GetNodes(), ModelEdges = G->GetEdges();

        Env = TEnv(Parameters[KRONGEN], TNotify::NullNotify);
        TStr IsDir = Env.GetIfArgPrefixStr("-isdir:", "false", "Produce directed graph (true, false)");
        const TInt NIter = Env.GetIfArgPrefixInt("-i:", 1, "Number of iterations of Kronecker product");
        
        if (pow(FitMtxM.GetDim(), static_cast<double>(NIter)) != ModelNodes)
            Error("GetGraphs", "Inconsistent value of -i: parameter, KronNodes != ModelNodes");
              

        // in and out average degrees of Kronecker graphs
        TFltPrV KronDegAvgIn, KronDegAvgOut;

       
        GenKron(Parameters[KRONGEN], FitMtxM, KronDegAvgIn, KronDegAvgOut);

        PlotDegrees(Parameters, KronDegAvgIn, KronDegAvgOut, "kron");

    }
}
Example #2
0
int main(int argc, char* argv[]) {
	Env = TEnv(argc, argv, TNotify::StdNotify);
	Env.PrepArgs(
			TStr::Fmt("Kronecker graphs. build: %s, %s. Time: %s", __TIME__,
					__DATE__, TExeTm::GetCurTm()));
	TExeTm ExeTm;
	Try
		Env = TEnv(argc, argv, TNotify::StdNotify);
		const TStr InFNm = Env.GetIfArgPrefixStr("-i:", "../as20graph.txt",
				"Input graph file (single directed edge per line)");
		TStr OutFNm = Env.GetIfArgPrefixStr("-o:", "", "Output file prefix");
		const TInt NZero = Env.GetIfArgPrefixInt("-n0:", 2,
				"Innitiator matrix size");
		const TStr InitMtx = Env.GetIfArgPrefixStr("-m:", "0.9 0.7; 0.5 0.2",
				"Init Gradient Descent Matrix (R=random)").GetLc();
		const TStr Perm =
				Env.GetIfArgPrefixStr("-p:", "d",
						"Initial node permutation: d:Degree, r:Random, o:Order").GetLc();
		const TInt GradIter = Env.GetIfArgPrefixInt("-gi:", 50,
				"Gradient descent iterations");
		const TFlt LrnRate = Env.GetIfArgPrefixFlt("-l:", 1e-5,
				"Learning rate");
		const TFlt MnStep = Env.GetIfArgPrefixFlt("-mns:", 0.005,
				"Minimum gradient step");
		const TFlt MxStep = Env.GetIfArgPrefixFlt("-mxs:", 0.05,
				"Maximum gradient step");
		const TInt WarmUp = Env.GetIfArgPrefixInt("-w:", 10000,
				"Samples to warm up");
		const TInt NSamples = Env.GetIfArgPrefixInt("-s:", 100000,
				"Samples per gradient estimation");
		//const TInt GradType = Env.GetIfArgPrefixInt("-gt:", 1, "1:Grad1, 2:Grad2");
		const bool ScaleInitMtx = Env.GetIfArgPrefixBool("-sim:", true,
				"Scale the initiator to match the number of edges");
		const TFlt PermSwapNodeProb =
				Env.GetIfArgPrefixFlt("-nsp:", 1.0,
						"Probability of using NodeSwap (vs. EdgeSwap) MCMC proposal distribution");
		if (OutFNm.Empty()) {
			OutFNm = TStr::Fmt("%s-fit%d", InFNm.GetFMid().CStr(), NZero());
		}
		// load graph
		PNGraph G;
		if (InFNm.GetFExt().GetLc() == ".ungraph") {
			TFIn FIn(InFNm);
			G = TSnap::ConvertGraph<PNGraph>(TUNGraph::Load(FIn), true);
		} else if (InFNm.GetFExt().GetLc() == ".ngraph") {
			TFIn FIn(InFNm);
			G = TNGraph::Load(FIn);
		} else {
			G = TSnap::LoadEdgeList<PNGraph>(InFNm, 0, 1);
		}
		// fit
		TKronMtx InitKronMtx =
				InitMtx == "r" ?
						TKronMtx::GetRndMtx(NZero, 0.1) :
						TKronMtx::GetMtx(InitMtx);
		InitKronMtx.Dump("INIT PARAM", true);
		TKroneckerLL KronLL(G, InitKronMtx, PermSwapNodeProb);
		if (ScaleInitMtx) {
			InitKronMtx.SetForEdges(G->GetNodes(), G->GetEdges());
		}
		KronLL.InitLL(G, InitKronMtx);
		InitKronMtx.Dump("SCALED PARAM", true);
		KronLL.SetPerm(Perm.GetCh(0));
		double LogLike = 0;
		//if (GradType == 1) {
		LogLike = KronLL.GradDescent(GradIter, LrnRate, MnStep, MxStep, WarmUp,
				NSamples);
		//} else if (GradType == 2) {
		//  LogLike = KronLL.GradDescent2(GradIter, LrnRate, MnStep, MxStep, WarmUp, NSamples); }
		//else{ Fail; }
		const TKronMtx& FitMtx = KronLL.GetProbMtx();
		FILE *F = fopen(OutFNm.CStr(), "w");
		fprintf(F, "Input\t%s\n", InFNm.CStr());
		TStrV ParamV;
		Env.GetCmLn().SplitOnAllCh(' ', ParamV);
		fprintf(F, "Command line options\n");
		for (int i = 0; i < ParamV.Len(); i++) {
			fprintf(F, "\t%s\n",
					ParamV[i].CStr() + (ParamV[i][0] == '-' ? 1 : 0));
		}
		fprintf(F, "Loglikelihood\t%10.2f\n", LogLike);
		fprintf(F, "Absolute error (based on expected number of edges)\t%f\n",
				KronLL.GetAbsErr());
		fprintf(F, "RunTime\t%g\n", ExeTm.GetSecs());
		fprintf(F, "Estimated initiator\t%s\n", FitMtx.GetMtxStr().CStr());
		fclose(F);

	Catch
	printf("\nrun time: %s (%s)\n", ExeTm.GetTmStr(),
			TSecTm::GetCurTm().GetTmStr().CStr());
	return 0;
}