TLorentzVector doCalEnergy(double BeamEnergy,
                           TLorentzVector Particle1,
                           TLorentzVector Particle2,
                           double nucleusMass,
                           double Particle2Mass,
                           double Particle3Mass)
{
    double E_Particle1   = Particle1.E();
    double p_Particle1_x = Particle1.Px();
    double p_Particle1_y = Particle1.Py();
    double p_Particle1_z = Particle1.Pz();
    double p_Particle1   = sqrt(TMath::Power(p_Particle1_x,2.0) +
                                    TMath::Power(p_Particle1_y,2.0) +
                                    TMath::Power(p_Particle1_z,2.0));
    double phi   = Particle2.Phi();
    double theta = Particle2.Theta();
    double b     = 2.0 * ( p_Particle1_x * cos(phi) * sin(theta) +
                           p_Particle1_y * sin(phi) * sin(theta) +
                           p_Particle1_z * cos(theta) -
                           BeamEnergy * cos(theta)
                         );
    double c     = p_Particle1 * p_Particle1 + BeamEnergy * BeamEnergy - 2.0 * BeamEnergy * p_Particle1_z;
    double d     = BeamEnergy + nucleusMass - E_Particle1;
    double e     = TMath::Power(Particle3Mass,2.0) - TMath::Power(Particle2Mass,2.0) - d * d + c;
    double Delta = 16.0 * TMath::Power(d,2.0) * (TMath::Power(e,2.0) +
                                                 TMath::Power(b * Particle2Mass,2.0) -
                                                 TMath::Power(d * Particle2Mass * 2.0,2.0));
    
    TLorentzVector NewParticle(0.0,0.0,0.0,0.0);
    if(Delta>0.)
    {
       double sol2     = (2.0 * e * b + sqrt(Delta)) / (2.0 * (4.0 * TMath::Power(d,2.0) - TMath::Power(b,2.0)));
       double newpxcal = sol2 * cos(phi) * sin(theta);
       double newpycal = sol2 * sin(phi) * sin(theta);
       double newpzcal = sol2 * cos(theta);
       double energy   = sqrt(TMath::Power(sol2,2.0) + TMath::Power(Particle2Mass,2.0));
      
       TLorentzVector NewParticle2(newpxcal,newpycal,newpzcal,energy);
       NewParticle = NewParticle2;
    }
  
    return NewParticle;
}
Example #2
0
void fill(int const kf, TLorentzVector* b, double weight, TLorentzVector const& p1Mom, TLorentzVector const& p2Mom, TVector3 v00)
{
   int const centrality = floor(nCent * gRandom->Rndm());

   TVector3 const vertex = getVertex(centrality);
   // smear primary vertex
   // float const sigmaVertex = sigmaVertexCent[cent];
   // TVector3 const vertex(gRandom->Gaus(0, sigmaVertex), gRandom->Gaus(0, sigmaVertex), gRandom->Gaus(0, sigmaVertex));

   v00 += vertex;

   // smear momentum
   TLorentzVector const p1RMom = smearMom(0, p1Mom);
   TLorentzVector const p2RMom = smearMom(0, p2Mom);

   // smear position
   TVector3 const p1RPos = smearPosData(0, vertex.z(), centrality, p1RMom, v00);
   TVector3 const p2RPos = smearPosData(0, vertex.z(), centrality, p2RMom, v00);
   // TVector3 const kRPos = smearPos(kMom, kRMom, v00);
   // TVector3 const pRPos = smearPos(pMom, pRMom, v00);

   // reconstruct
   TLorentzVector const rMom = p1RMom + p2RMom;
   float const p1Dca = dca(p1Mom.Vect(), v00, vertex);
   float const p2Dca = dca(p2Mom.Vect(), v00, vertex);
   float const p1RDca = dca(p1RMom.Vect(), p1RPos, vertex);
   float const p2RDca = dca(p2RMom.Vect(), p2RPos, vertex);

   TVector3 v0;
   float const dca12 = dca1To2(p1RMom.Vect(), p1RPos, p2RMom.Vect(), p2RPos, v0);
   float const decayLength = (v0 - vertex).Mag();
   float const dcaD0ToPv = dca(rMom.Vect(), v0, vertex);
   float const cosTheta = (v0 - vertex).Unit().Dot(rMom.Vect().Unit());
   float const angle12 = p1RMom.Vect().Angle(p2RMom.Vect());

   TLorentzVector p1RMomRest = p1RMom;
   TVector3 beta;
   beta.SetMagThetaPhi(rMom.Beta(), rMom.Theta(), rMom.Phi());
   p1RMomRest.Boost(-beta);
   float const cosThetaStar = rMom.Vect().Unit().Dot(p1RMomRest.Vect().Unit());

   // save
   float arr[100];
   int iArr = 0;
   arr[iArr++] = centrality;
   arr[iArr++] = vertex.X();
   arr[iArr++] = vertex.Y();
   arr[iArr++] = vertex.Z();

   arr[iArr++] = kf;
   arr[iArr++] = b->M();
   arr[iArr++] = b->Perp();
   arr[iArr++] = b->PseudoRapidity();
   arr[iArr++] = b->Rapidity();
   arr[iArr++] = b->Phi();
   arr[iArr++] = v00.X();
   arr[iArr++] = v00.Y();
   arr[iArr++] = v00.Z();

   arr[iArr++] = rMom.M();
   arr[iArr++] = rMom.Perp();
   arr[iArr++] = rMom.PseudoRapidity();
   arr[iArr++] = rMom.Rapidity();
   arr[iArr++] = rMom.Phi();
   arr[iArr++] = v0.X();
   arr[iArr++] = v0.Y();
   arr[iArr++] = v0.Z();

   arr[iArr++] = dca12;
   arr[iArr++] = decayLength;
   arr[iArr++] = dcaD0ToPv;
   arr[iArr++] = cosTheta;
   arr[iArr++] = angle12;
   arr[iArr++] = cosThetaStar;

   arr[iArr++] = p1Mom.M();
   arr[iArr++] = p1Mom.Perp();
   arr[iArr++] = p1Mom.PseudoRapidity();
   arr[iArr++] = p1Mom.Rapidity();
   arr[iArr++] = p1Mom.Phi();
   arr[iArr++] = p1Dca;

   arr[iArr++] = p1RMom.M();
   arr[iArr++] = p1RMom.Perp();
   arr[iArr++] = p1RMom.PseudoRapidity();
   arr[iArr++] = p1RMom.Rapidity();
   arr[iArr++] = p1RMom.Phi();
   arr[iArr++] = p1RPos.X();
   arr[iArr++] = p1RPos.Y();
   arr[iArr++] = p1RPos.Z();
   arr[iArr++] = p1RDca;
   arr[iArr++] = tpcReconstructed(0,1,centrality,p1RMom);

   arr[iArr++] = p2Mom.M();
   arr[iArr++] = p2Mom.Perp();
   arr[iArr++] = p2Mom.PseudoRapidity();
   arr[iArr++] = p2Mom.Rapidity();
   arr[iArr++] = p2Mom.Phi();
   arr[iArr++] = p2Dca;

   arr[iArr++] = p2RMom.M();
   arr[iArr++] = p2RMom.Perp();
   arr[iArr++] = p2RMom.PseudoRapidity();
   arr[iArr++] = p2RMom.Rapidity();
   arr[iArr++] = p2RMom.Phi();
   arr[iArr++] = p2RPos.X();
   arr[iArr++] = p2RPos.Y();
   arr[iArr++] = p2RPos.Z();
   arr[iArr++] = p2RDca;
   arr[iArr++] = tpcReconstructed(0,-1,centrality,p2RMom);

   arr[iArr++] = matchHft(1, vertex.z(), centrality, p1RMom);
   arr[iArr++] = matchHft(0, vertex.z(), centrality, p2RMom);

   nt->Fill(arr);
}
Example #3
0
void recursive_inter_with_air(){
	TFile *f1 = new TFile("muon.root", "recreate");
	TCanvas *c1 = new TCanvas("test", "test", 600, 700);

	TH1F * mu_c_1 = new TH1F("mu_c_1", "mu_c_1", 100, 0, 500);
	TH1F * mu_c_2 = new TH1F("mu_c_2", "mu_c_2", 100, 0, 500);
	TH1F * mu_c_3 = new TH1F("mu_c_3", "mu_c_3", 100, 0, 500);

	fn_muon_dxde = new TF1("f1", dxde_muon, M_mu, 1000, 1);
	TNtuple * ntuple = new TNtuple("ntuple", "ntuple", "nobs:detz:theta:press");
	// TNtuple *ntuple = new TNtuple("ntuple", "ntuple", "id:flag:e:px:py:pz:x:y:z");
	r = new TRandom();
	// r ->SetSeed(12232);
	for (int ievertex_nt = 0; ievertex_nt < 500; ievertex_nt++)
	{
		n_particle = 0;

		// init muon conunter
		int mu_counter1 = 0;
		int mu_counter2 = 0;
		int mu_counter3 = 0;

		double E = 1000; // GeV
		double theta = 0;
		// double theta = acos(r->Rndm());
		double phi = r->Rndm()*pi*2;
		double x = 0, y = 0, z = 1.0e10; //infinity
		double vertex_z, vertex_x, vertex_y; //km

		

		Get_Int_Posi(pdg_proton_p, theta, phi, x, y, z, vertex_x, vertex_y, vertex_z);

		Hillas_Split(pdg_proton_p, E, theta, phi, vertex_x, vertex_y, vertex_z);

		double proton_threshold = 10;
		double pion_threshold = 10;
		int i_particle = 0;
		while(i_particle < n_particle){
			int id = Ptcl_bank[i_particle].id;
			int flag = Ptcl_bank[i_particle].flag;
			double e = Ptcl_bank[i_particle].e;
			double x = Ptcl_bank[i_particle].vertex_x;
			double y = Ptcl_bank[i_particle].vertex_y;
			double z = Ptcl_bank[i_particle].vertex_z;
			if (id == pdg_proton_p && flag == 1 && e > proton_threshold)
			{
				Get_Int_Posi(id, theta, phi, x, y, z, vertex_x, vertex_y, vertex_z);
				if (vertex_z > 0)
				{
					Hillas_Split(id, e, theta, phi, vertex_x, vertex_y, vertex_z);
					Ptcl_bank[i_particle].flag = 0;
				}
			}
			if (id == pdg_pion_p &&flag == 1){

				Get_Int_Posi(id, theta, phi, x, y, z, vertex_x, vertex_y, vertex_z)	;			
				double l_to_interaction = sqrt((vertex_x-x)*(vertex_x-x)+(vertex_y-y)*(vertex_y-y)+(vertex_z-z)*(vertex_z-z));
				double l_to_decay = get_decay_length(pdg_pion_p, tau_pion, e);
				
				if (l_to_decay>l_to_interaction){
					if (vertex_z > 0){
						Hillas_Split(id, e, theta, phi, vertex_x, vertex_y, vertex_z);
						Ptcl_bank[i_particle].flag = 0;
					}
				}else{ // pion decay
					Ptcl_bank[i_particle].flag = 0;
					double px = Ptcl_bank[i_particle].px;
					double py = Ptcl_bank[i_particle].py;
					double pz = Ptcl_bank[i_particle].pz; // GeV
					TLorentzVector pion(px, py, pz, e);
					double decay_particle_mass[2] = {M_mu, M_neu};
					TGenPhaseSpace event;
					event.SetDecay(pion, 2, decay_particle_mass);
					event.Generate();
					TLorentzVector Muon = *(event.GetDecay(0));
					TLorentzVector Neu = *(event.GetDecay(1));

					double mu_theta = Muon.Theta();
					double mu_phi = Muon.Phi();
					
					if (mu_theta>pi/2.)	{
						double mu_E = Muon.E();
						double muon_decay_time = r ->Exp(tau_muon);
						double muon_decay_length = get_decay_length(pdg_muon_n, tau_muon, mu_E);

						float det_x = 0;
						float det_y = 0;
						float det_z = 0;
						mu_counter1++;
						double l_mu_vtx_to_det = sqrt(pow(vertex_x-det_x,2)+pow(vertex_y-det_y,2)+pow(vertex_z-det_z,2));
						// cout << "MuE" << mu_E << " Mass" <<M_mu<< " dl" << muon_decay_length << " lvd" << l_mu_vtx_to_det << endl;
						if (muon_decay_length > l_mu_vtx_to_det)	
						{
							mu_counter2++;

							double mu_stop_x;
							double mu_stop_y;
							double mu_stop_z;

							get_muon_stop_position(mu_E, mu_theta, mu_phi, vertex_x, vertex_y, vertex_z, mu_stop_x, mu_stop_y, mu_stop_z);
							double l_muon_stop = sqrt(pow(vertex_x-mu_stop_x,2)+pow(vertex_y-mu_stop_y,2)+pow(vertex_z-mu_stop_z,2));
							// cout << l_muon_stop << " " << l_mu_vtx_to_det <<endl;
							if (l_muon_stop > l_mu_vtx_to_det)
							{
								mu_counter3++;
							}
							
							
						}
					}
				}
			}
			i_particle++;
		}
		mu_c_1 ->Fill(mu_counter1);
		mu_c_2 ->Fill(mu_counter2);
		mu_c_3 ->Fill(mu_counter3);

		// for (int i_particle = 0; i_particle < n_particle; ++i_particle){
		// 	int id = Ptcl_bank[i_particle].id;
		// 	int flag = Ptcl_bank[i_particle].flag;
		// 	double e = Ptcl_bank[i_particle].e;
		// 	double px = Ptcl_bank[i_particle].px;
		// 	double py = Ptcl_bank[i_particle].py;
		// 	double pz = Ptcl_bank[i_particle].pz;
		// 	double x = Ptcl_bank[i_particle].vertex_x;
		// 	double y = Ptcl_bank[i_particle].vertex_y;
		// 	double z = Ptcl_bank[i_particle].vertex_z;
		// 	ntuple->Fill(id, flag, e, px, py, pz, x, y, z);
		// }
	}

	mu_c_3 ->Draw();
	mu_c_2 ->SetLineColor(2);
	mu_c_2 ->Draw("same");
	mu_c_1 ->SetLineColor(4);
	mu_c_1 ->Draw("same");
	// ntuple->Draw("z");
} 
bool leptonic_fitter_algebraic::fit( const TLorentzVector& B, const TH1& BITF, const TF1& Beff, 
				     const TLorentzVector& lep, 
				     double MEX, double MEY, const TF1& dnuPDF )
{
  if( _dbg > 19 ) cout<<"DBG20 Entered leptonic_fitter_algebraic::fit with B mass: "<<B.M()<<", l_m:"<<lep.M()<<", MET: "<<MEX<<" "<<MEY<<endl;
  if( B.M() <= 0 ) throw std::runtime_error( "leptonic_fitter_algebraic was given a b-jet with an illegal (non-positive) mass!"); 
  if( lep.M() < 0 ) throw std::runtime_error( "leptonic_fitter_algebraic was given a lepton with an illegal (negative) mass!"); 
  _converged = _swapped = false;
  _obsB = B;
  _obsL = lep;

  _BITF = &BITF;
  _Beff = &Beff;
  _dnuPDF = dnuPDF;

  _b_m2 = B.M2();

  double lep_b_angle = lep.Angle( B.Vect() );
  double cos_lep_b = TMath::Cos( lep_b_angle );
  double sin_lep_b = TMath::Sin( lep_b_angle );
  double b_p = B.P();
  double b_e = B.E();
  _denom = b_e - cos_lep_b * b_p;
  
  _lep_p = lep.P();
  _x0 = - _W_m2 / ( 2 * _lep_p );
  _y1 = - sin_lep_b * _x0 * b_p / _denom;
  _x1_0 = _x0 * b_e / _denom  -  _y1*_y1 / _x0;
  _Z2_0 = _x0*_x0 - _W_m2 - _y1*_y1;
  if( _dbg > 219 ) cout<<"DBG220 lfa updated lepton with: "<<lv2str( lep )<<" -> x0:"<<_x0<<", y1: "<<_y1<<", x1_0: "<<_x1_0<<", Z2_0: "<<_Z2_0<<endl;

  static double bnums[3];
  bnums[0] = B.X();
  bnums[1] = B.Y();
  bnums[2] = B.Z();
  TMatrixD bXYZ( 3, 1, bnums );
  _R_T = rotation( 2, lep.Phi() ); // R_z^T
  _R_T *= rotation( 1, lep.Theta() - 0.5*TMath::Pi() ); // R_z^T R_y^T
  TMatrixD rotation_vect( _R_T, TMatrixD::kTransposeMult, bXYZ ); // R_y R_z
  double* rotation_array = rotation_vect.GetMatrixArray();
  double phi_x = - TMath::ATan2( rotation_array[2], rotation_array[1] );
  if( _dbg > 99 ) cout<<"DBG100 lfa x rotation vector is:"<<rotation_array[0]<<" "<<rotation_array[1]<<" "<<rotation_array[2]<<" -> phi_x:"<<phi_x<<endl;
  _R_T *= rotation( 0, - phi_x ); // R_z^T R_y^T R_x^T

  // set up _Nu's non-zero elements so that \vec{nu} = Nu \vec{t} for any \vec{t} (since only t's 3nd component is used, and its always 1).
  _Nu[0][2] = MEX;
  _Nu[1][2] = MEY;

  double iVarMET = TMath::Power( TMath::Max( 1., dnuPDF.GetHistogram()->GetRMS() ), -2 );
  _invFlatVar[0][0] = _invFlatVar[1][1] = iVarMET; // set up the chi^2 distance with the right order of magnitude (generalizes to rotated covariance matrix)
  if( _dbg > 209 ) cout<<"DBG210 lfa "<<dnuPDF.GetName()<<" --> iVarMET:"<<iVarMET<<endl;

  // (re)define fit parameter, so all fits start off on an equal footing
  _mini->SetPrintLevel( _minimizer_print_level );
  _mini->Clear();
  _mini->SetFunction( _functor );
  leptonic_fitter_algebraic_object = this; // set the function in the functor pointing back to this object. Doubtfull that all this redirection is needed...
  _mini->SetTolerance( _tolerance );
  bool OK = _mini->SetLimitedVariable( 0, "sB", 1.0, 0.4, 0.1, 6.0 );
  //bool OK = _mini->SetVariable( 0, "sB", 1.0, 0.4 );
  if( ! OK ) {cerr<<"minimizer (@lfa) failed to SetVariable."<<endl; return false;}

  // define 1 sigma in terms of the function
  _mini->SetErrorDef( 0.5 ); // since this is a likelihood fit

  // do the minimization
  OK = _mini->Minimize(); 
  if( _dbg > 19 && ( ! OK || _dbg > 59 ) ) cout<<"DBG INFO: initial fit @lfa returned OK: "<<OK<<", has status: "<<_mini->Status()<<endl;

  _converged = OK; // use status somehow? depends on fitter?

  // read parameters
  const double *xs = _mini->X();
  for( int ip = 0; ip < 1; ++ip ) _params[ ip ] = xs[ ip ];

  // return all intermediate results to the minimum, in particular, the discriminant
  calc_MLL( _params, true );
  TMatrixD nu_vec( _Emat, TMatrixD::kMult, _tvec );
  update_nu_and_decay_chain( nu_vec );
  if( _dbg > 203 ) cout<<"DBG204 lfa finalized _genN: "<<lv2str(_genN)<<", _W: "<<lv2str(_W)<<", & _t: "<<lv2str(_T)<<endl;

  _MLL = _mini->MinValue();
  return true;
} 
Int_t dieleAna(TString inputlist, TString outfile, Int_t nev=-1, Int_t whichweight = 0)
{

    TH1::SetDefaultSumw2();
    TH3F *p3DEffEle[6][NWEIGHTS+1]; // mult bins, MLP weights + HC
    TH3F *p3DEffPos[6][NWEIGHTS+1];
    TH3F *p3DAccEle[6][NWEIGHTS+1];
    TH3F *p3DAccPos[6][NWEIGHTS+1];
    readAccEffMatrices(p3DAccEle, p3DAccPos, p3DEffEle, p3DEffPos);
    TH2F *smear_ele, *smear_pos;
    TFile *file_smear = new TFile("smearing_matrix.root","read");
    smear_ele = (TH2F*)file_smear->Get("smear_ele");
    smear_pos = (TH2F*)file_smear->Get("smear_pos");

    TRandom random;

/*
    TFile *pEffFile;

    pEffFile = new TFile("Input/EffMatrixMVA2RefAccNewCP_100Mio.root");
    if (pEffFile)
    {
	pEffFile->cd();
	for(Int_t i = 0 ; i < 5 ; i++){
            p3DEffEle[i][6] = (TH3F*) pEffFile->Get(Form("hHistEff3DMult%iNeg",i));
            p3DEffPos[i][6] = (TH3F*) pEffFile->Get(Form("hHistEff3DMult%iPos",i));
     //       p3DEffEle[i] = (TH3F*) pEffFile->Get("hHistEff3DNeg");
      //      p3DEffPos[i] = (TH3F*) pEffFile->Get("hHistEff3DPos");
        }
    }
    else
    {
	Error("DrawFromNtuple constructor","pointer to eff matrix file is NULL");
	for(Int_t i = 0 ; i < 5 ; i++){
	    p3DEffEle[i][6] = NULL;
	    p3DEffPos[i][6] = NULL;
        }
    }
*/

    TH1F *pEventClass;
    TH1F *pEventClass_recur;
    TFile *pEventClassFile;
//    pEventClassFile = new TFile("eventClass_mult_nonempty_4secmult_200fpj_wait.root");
//    pEventClassFile = new TFile("eventClass_target_mult_rplane_nonempty_4secmult.root");
    pEventClassFile = new TFile("eventClass_target_mult_rplane_minmom_nmix_w6.root");
    if (pEventClassFile) {
        pEventClass = (TH1F*)pEventClassFile->Get("eventClass");
        pEventClass_recur = (TH1F*)pEventClassFile->Get("eventClass_recur");
        if (pEventClass == NULL || pEventClass_recur == NULL) {
            Error("DrawFromNtuple constructor","Histogram not found in the event class file");
            exit (-1);
        }
    }    
    else {
        Error("DrawFromNtuple constructor","Event class file not found");
        exit (-1);
    }
    HLoop* loop = new HLoop(kTRUE);  // kTRUE : create Hades  (needed to work with standard eventstructure)
    TString readCategories = "";
    if (inputlist.EndsWith(".list")) {
        loop->addFilesList(inputlist);
    }
    else {
        loop->addMultFiles(inputlist);
    }
    if(!loop->setInput(readCategories)) { exit(1); }
    loop->printCategories();
    loop->readSectorFileList("FileListLepton.list");
    int sectors[6];

    HGeantKine *kine1;
    HGeantKine *kine2;

    HCategory* kineCat = (HCategory*)HCategoryManager::getCategory(catGeantKine);

    HHistMap hM(outfile.Data());
    hM.setSilentFail(kTRUE);

    //------------------------------------------------------------------
    //--------------- begin histo booking -----------------------------------------------------
    //------------------------------------------------------------------------------------------

    const Int_t nbins = 26;
    Double_t xAxis1[nbins+1] = {0, 0.010, 0.020, 0.030, 0.040, 0.050, 0.060, 0.070, 0.080, 0.090, 0.110, 0.130, 0.150, 0.170, 0.200, 0.250, 0.300, 0.350, 0.400, 0.450, 0.500, 0.550, 0.600, 0.700, 0.800, 0.900, 1.};

    hM.addHist(new TH1F(TString("hmassNP"),TString("hmassNP"),nbins,xAxis1));
    hM.addHist(new TH1F(TString("hmassPP"),TString("hmassPP"),nbins,xAxis1));
    hM.addHist(new TH1F(TString("hmassNN"),TString("hmassNN"),nbins,xAxis1));
    hM.addHist(new TH1F(TString("hoAngleNP"),TString("hoAngleNP"),2000,0,200));
    hM.addHist(new TH1F(TString("hoAnglePP"),TString("hoAnglePP"),2000,0,200));
    hM.addHist(new TH1F(TString("hoAngleNN"),TString("hoAngleNN"),2000,0,200));
    hM.addHist(new TH1F(TString("hyNP"),TString("hyNP"),100,0,2));
    hM.addHist(new TH1F(TString("hyPP"),TString("hyPP"),100,0,2));
    hM.addHist(new TH1F(TString("hyNN"),TString("hyNN"),100,0,2));
    hM.addHist(new TH1F(TString("hptNP"),TString("hptNP"),100,0,1000));
    hM.addHist(new TH1F(TString("hptPP"),TString("hptPP"),100,0,1000));
    hM.addHist(new TH1F(TString("hptNN"),TString("hptNN"),100,0,1000));
    hM.addHist(new TH2F(TString("hoAnglemassNP"),TString("hoAnglemassNP"),90,0,180,nbins,xAxis1));
    hM.addHist(new TH2F(TString("hoAnglemassPP"),TString("hoAnglemassPP"),90,0,180,nbins,xAxis1));
    hM.addHist(new TH2F(TString("hoAnglemassNN"),TString("hoAnglemassNN"),90,0,180,nbins,xAxis1));
    hM.addHist(new TH2F(TString("hoAngleptNP"),TString("hoAngleptNP"),90,0,180,120,0,1200));
    hM.addHist(new TH2F(TString("hoAngleptPP"),TString("hoAngleptPP"),90,0,180,120,0,1200));
    hM.addHist(new TH2F(TString("hoAngleptNN"),TString("hoAngleptNN"),90,0,180,120,0,1200));
    hM.addHist(new TH2F(TString("hmassptNP"),TString("hmassptNP"),nbins,xAxis1,120,0,1200));
    hM.addHist(new TH2F(TString("hmassptPP"),TString("hmassptPP"),nbins,xAxis1,120,0,1200));
    hM.addHist(new TH2F(TString("hmassptNN"),TString("hmassptNN"),nbins,xAxis1,120,0,1200));
    hM.addHist(new TH2F(TString("hoAngleyNP"),TString("hoAngleyNP"),90,0,180,100,0,2));
    hM.addHist(new TH2F(TString("hoAngleyPP"),TString("hoAngleyPP"),90,0,180,100,0,2));
    hM.addHist(new TH2F(TString("hoAngleyNN"),TString("hoAngleyNN"),90,0,180,100,0,2));
    hM.addHist(new TH2F(TString("hmassyNP"),TString("hmassyNP"),nbins,xAxis1,100,0,2));
    hM.addHist(new TH2F(TString("hmassyPP"),TString("hmassyPP"),nbins,xAxis1,100,0,2));
    hM.addHist(new TH2F(TString("hmassyNN"),TString("hmassyNN"),nbins,xAxis1,100,0,2));
    hM.addHist(new TH2F(TString("hptyNP"),TString("hptyNP"),120,0,1200,100,0,2));
    hM.addHist(new TH2F(TString("hptyPP"),TString("hptyPP"),120,0,1200,100,0,2));
    hM.addHist(new TH2F(TString("hptyNN"),TString("hptyNN"),120,0,1200,100,0,2));
    hM.addHist(new TH2F(TString("hth1th2NP"),TString("hth1th2NP"),90,0,90,90,0,90));
    hM.addHist(new TH2F(TString("hth1th2PP"),TString("hth1th2PP"),90,0,90,90,0,90));
    hM.addHist(new TH2F(TString("hth1th2NN"),TString("hth1th2NN"),90,0,90,90,0,90));
    hM.addHist(new TH2F(TString("hp1p2NP"),TString("hp1p2NP"),100,0,1100,100,0,1100));
    hM.addHist(new TH2F(TString("hp1p2PP"),TString("hp1p2PP"),100,0,1100,100,0,1100));
    hM.addHist(new TH2F(TString("hp1p2NN"),TString("hp1p2NN"),100,0,1100,100,0,1100));

    for (int i = 0; i < 5; ++i) {
        hM.addHist(new TH1F(TString("hmassNP_eff_multbin")+TString::Itoa(i,10),TString("hmassNP_eff_multbin")+TString::Itoa(i,10),nbins,xAxis1));
        hM.addHist(new TH1F(TString("hmassPP_eff_multbin")+TString::Itoa(i,10),TString("hmassPP_eff_multbin")+TString::Itoa(i,10),nbins,xAxis1));
        hM.addHist(new TH1F(TString("hmassNN_eff_multbin")+TString::Itoa(i,10),TString("hmassNN_eff_multbin")+TString::Itoa(i,10),nbins,xAxis1));
        hM.addHist(new TH1F(TString("hoAngleNP_eff_multbin")+TString::Itoa(i,10),TString("hoAngleNP_eff_multbin")+TString::Itoa(i,10),2000,0,200));
        hM.addHist(new TH1F(TString("hoAnglePP_eff_multbin")+TString::Itoa(i,10),TString("hoAnglePP_eff_multbin")+TString::Itoa(i,10),2000,0,200));
        hM.addHist(new TH1F(TString("hoAngleNN_eff_multbin")+TString::Itoa(i,10),TString("hoAngleNN_eff_multbin")+TString::Itoa(i,10),2000,0,200));
        hM.addHist(new TH1F(TString("hyNP_eff_multbin")+TString::Itoa(i,10),TString("hyNP_eff_multbin")+TString::Itoa(i,10),100,0,2));
        hM.addHist(new TH1F(TString("hyPP_eff_multbin")+TString::Itoa(i,10),TString("hyPP_eff_multbin")+TString::Itoa(i,10),100,0,2));
        hM.addHist(new TH1F(TString("hyNN_eff_multbin")+TString::Itoa(i,10),TString("hyNN_eff_multbin")+TString::Itoa(i,10),100,0,2));
        hM.addHist(new TH1F(TString("hptNP_eff_multbin")+TString::Itoa(i,10),TString("hptNP_eff_multbin")+TString::Itoa(i,10),100,0,1000));
        hM.addHist(new TH1F(TString("hptPP_eff_multbin")+TString::Itoa(i,10),TString("hptPP_eff_multbin")+TString::Itoa(i,10),100,0,1000));
        hM.addHist(new TH1F(TString("hptNN_eff_multbin")+TString::Itoa(i,10),TString("hptNN_eff_multbin")+TString::Itoa(i,10),100,0,1000));
        hM.addHist(new TH2F(TString("hoAnglemassNP_eff_multbin")+TString::Itoa(i,10),TString("hoAnglemassNP_eff_multbin")+TString::Itoa(i,10),90,0,180,nbins,xAxis1));
        hM.addHist(new TH2F(TString("hoAnglemassPP_eff_multbin")+TString::Itoa(i,10),TString("hoAnglemassPP_eff_multbin")+TString::Itoa(i,10),90,0,180,nbins,xAxis1));
        hM.addHist(new TH2F(TString("hoAnglemassNN_eff_multbin")+TString::Itoa(i,10),TString("hoAnglemassNN_eff_multbin")+TString::Itoa(i,10),90,0,180,nbins,xAxis1));
        hM.addHist(new TH2F(TString("hoAngleptNP_eff_multbin")+TString::Itoa(i,10),TString("hoAngleptNP_eff_multbin")+TString::Itoa(i,10),90,0,180,120,0,1200));
        hM.addHist(new TH2F(TString("hoAngleptPP_eff_multbin")+TString::Itoa(i,10),TString("hoAngleptPP_eff_multbin")+TString::Itoa(i,10),90,0,180,120,0,1200));
        hM.addHist(new TH2F(TString("hoAngleptNN_eff_multbin")+TString::Itoa(i,10),TString("hoAngleptNN_eff_multbin")+TString::Itoa(i,10),90,0,180,120,0,1200));
        hM.addHist(new TH2F(TString("hmassptNP_eff_multbin")+TString::Itoa(i,10),TString("hmassptNP_eff_multbin")+TString::Itoa(i,10),nbins,xAxis1,120,0,1200));
        hM.addHist(new TH2F(TString("hmassptPP_eff_multbin")+TString::Itoa(i,10),TString("hmassptPP_eff_multbin")+TString::Itoa(i,10),nbins,xAxis1,120,0,1200));
        hM.addHist(new TH2F(TString("hmassptNN_eff_multbin")+TString::Itoa(i,10),TString("hmassptNN_eff_multbin")+TString::Itoa(i,10),nbins,xAxis1,120,0,1200));
        hM.addHist(new TH2F(TString("hoAngleyNP_eff_multbin")+TString::Itoa(i,10),TString("hoAngleyNP_eff_multbin")+TString::Itoa(i,10),90,0,180,100,0,2));
        hM.addHist(new TH2F(TString("hoAngleyPP_eff_multbin")+TString::Itoa(i,10),TString("hoAngleyPP_eff_multbin")+TString::Itoa(i,10),90,0,180,100,0,2));
        hM.addHist(new TH2F(TString("hoAngleyNN_eff_multbin")+TString::Itoa(i,10),TString("hoAngleyNN_eff_multbin")+TString::Itoa(i,10),90,0,180,100,0,2));
        hM.addHist(new TH2F(TString("hmassyNP_eff_multbin")+TString::Itoa(i,10),TString("hmassyNP_eff_multbin")+TString::Itoa(i,10),nbins,xAxis1,100,0,2));
        hM.addHist(new TH2F(TString("hmassyPP_eff_multbin")+TString::Itoa(i,10),TString("hmassyPP_eff_multbin")+TString::Itoa(i,10),nbins,xAxis1,100,0,2));
        hM.addHist(new TH2F(TString("hmassyNN_eff_multbin")+TString::Itoa(i,10),TString("hmassyNN_eff_multbin")+TString::Itoa(i,10),nbins,xAxis1,100,0,2));
        hM.addHist(new TH2F(TString("hptyNP_eff_multbin")+TString::Itoa(i,10),TString("hptyNP_eff_multbin")+TString::Itoa(i,10),120,0,1200,100,0,2));
        hM.addHist(new TH2F(TString("hptyPP_eff_multbin")+TString::Itoa(i,10),TString("hptyPP_eff_multbin")+TString::Itoa(i,10),120,0,1200,100,0,2));
        hM.addHist(new TH2F(TString("hptyNN_eff_multbin")+TString::Itoa(i,10),TString("hptyNN_eff_multbin")+TString::Itoa(i,10),120,0,1200,100,0,2));
        hM.addHist(new TH2F(TString("hth1th2NP_eff_multbin")+TString::Itoa(i,10),TString("hth1th2NP_eff_multbin")+TString::Itoa(i,10),90,0,90,90,0,90));
        hM.addHist(new TH2F(TString("hth1th2PP_eff_multbin")+TString::Itoa(i,10),TString("hth1th2PP_eff_multbin")+TString::Itoa(i,10),90,0,90,90,0,90));
        hM.addHist(new TH2F(TString("hth1th2NN_eff_multbin")+TString::Itoa(i,10),TString("hth1th2NN_eff_multbin")+TString::Itoa(i,10),90,0,90,90,0,90));
        hM.addHist(new TH2F(TString("hp1p2NP_eff_multbin")+TString::Itoa(i,10),TString("hp1p2NP_eff_multbin")+TString::Itoa(i,10),100,0,1100,100,0,1100));
        hM.addHist(new TH2F(TString("hp1p2PP_eff_multbin")+TString::Itoa(i,10),TString("hp1p2PP_eff_multbin")+TString::Itoa(i,10),100,0,1100,100,0,1100));
        hM.addHist(new TH2F(TString("hp1p2NN_eff_multbin")+TString::Itoa(i,10),TString("hp1p2NN_eff_multbin")+TString::Itoa(i,10),100,0,1100,100,0,1100));
    }

    //--------------- end histo booking -----------------------------------------------------

    HGenericEventMixer<HGeantKine> eventmixer;
    eventmixer.setPIDs(2,3,1);
    eventmixer.setBuffSize(80);
    //eventmixer.setBuffSize(2);
    HGenericEventMixer<HGeantKine> eventmixer_eff[5];
    for (int mb = 0; mb < 5; ++mb) {
        eventmixer_eff[mb].setPIDs(2,3,1);
        eventmixer_eff[mb].setBuffSize(80);
        //eventmixer_eff[mb].setBuffSize(2);
    }

    TStopwatch timer;
    timer.Reset();
    timer.Start();

    Float_t impB = -1.;
    Float_t impB_bins[]  = {9.3, 8.1, 6.6, 4.7, 0.};

    Int_t evtsInFile = loop->getEntries();
    if(nev < 0 || nev > evtsInFile ) nev = evtsInFile;

    for(Int_t i = 1; i < nev; i++)
    {
        //----------break if last event is reached-------------
        //if(!gHades->eventLoop(1)) break;
        if(loop->nextEvent(i) <= 0) { cout<<" end recieved "<<endl; break; } // last event reached
        HTool::printProgress(i,nev,1,"Analyze :");
        loop->getSectors(sectors);

	HPartialEvent *fSimul        = ((HRecEvent*)gHades->getCurrentEvent())->getPartialEvent(catSimul);
	HGeantHeader *fSubHeader = (HGeantHeader*)(fSimul->getSubHeader());
	impB = fSubHeader->getImpactParameter();

	Int_t multbin = 0;
        if (impB >= impB_bins[4] && impB <= impB_bins[3]) {multbin=1;} // most central
	if (impB >  impB_bins[3] && impB <= impB_bins[2]) {multbin=2;}
	if (impB >  impB_bins[2] && impB <= impB_bins[1]) {multbin=3;}
	if (impB >  impB_bins[1] && impB <= impB_bins[0]) {multbin=4;} // most peripheral
	if (impB >  impB_bins[0]) {multbin=5;}
/*
	HParticleEvtInfo* evtinfo;
	evtinfo = HCategoryManager::getObject(evtinfo,catParticleEvtInfo,0);

	Int_t multbin = 0;
	Int_t mult_meta = evtinfo->getSumTofMultCut() + evtinfo->getSumRpcMultHitCut();
        if (mult_meta >  60 && mult_meta <=  88) multbin = 4; // most peripheral
        if (mult_meta >  88 && mult_meta <= 121) multbin = 3;
        if (mult_meta > 121 && mult_meta <= 160) multbin = 2;
        if (mult_meta > 160 && mult_meta <= 250) multbin = 1; // most central
        if (mult_meta > 250) multbin = 5;
*/

        if (multbin == 0 || multbin == 5) continue;

        Int_t size = kineCat->getEntries();

        // Additional loop to fill vector
        vector<HGeantKine *> vep;
        vector<HGeantKine *> vem;
        vector<HGeantKine *> vep_eff;
        vector<HGeantKine *> vem_eff;
        vector<HGeantKine *> vep_eff_multbin;
        vector<HGeantKine *> vem_eff_multbin;
	for(Int_t j = 0; j < size; j ++){
	    kine1 = HCategoryManager::getObject(kine1,kineCat,j);
            Float_t vx,vy,vz;
            kine1->getVertex(vx,vy,vz);
	    Float_t vr = TMath::Sqrt(vx*vx+vy*vy);
            if (vz < -60 || vz > 0) continue;
            if (vr > 2) continue;
            Int_t mamaNum = kine1->getParentTrack();

            if (kine1->isInAcceptance()) {
                if (kine1->getTotalMomentum() > 100 && kine1->getTotalMomentum() < 1000) {
                    Float_t px,py,pz;
                    kine1->getMomentum(px,py,pz);
                    TH2F *smear_matr;
                    if (kine1->getID() == 2) {
                        smear_matr = smear_pos;
                    } else {
                        smear_matr = smear_ele;
                    }
                    Float_t mom_ideal = kine1->getTotalMomentum();
                    Float_t mom_reco = smear(mom_ideal,smear_matr,random);
                    Float_t reco_over_ideal = mom_reco / mom_ideal;
                    kine1->setMomentum(px*reco_over_ideal,py*reco_over_ideal,pz*reco_over_ideal);
                    TLorentzVector vec;
                    HParticleTool::getTLorentzVector(kine1,vec,kine1->getID());

                    Float_t mom = vec.Vect().Mag();
                    Float_t the = vec.Theta()*TMath::RadToDeg();
                    Float_t phi = (vec.Phi()+TMath::Pi())*TMath::RadToDeg();
                    Float_t chg = (kine1->getID() == 2) ? 1 : -1;

                    if (kine1->getID() == 3) {
                        vem.push_back(new HGeantKine(*kine1));
                    }
                    if (kine1->getID() == 2) {
                        vep.push_back(new HGeantKine(*kine1));
                    }
                    Float_t eff = 1./getEfficiencyFactor(p3DEffEle[0][6],p3DEffPos[0][6],mom_ideal,the,phi,chg,false,false); // don't debug, don't check min value
                    if (isinf(eff) || isnan(eff)) eff = 0.;
                    if (random.Uniform(1) > eff) {
                        if (kine1->getID() == 3) {
                            vem_eff.push_back(new HGeantKine(*kine1));
                        }
                        if (kine1->getID() == 2) {
                            vep_eff.push_back(new HGeantKine(*kine1));
                        }
                    }
                    Float_t eff_multbin = 1./getEfficiencyFactor(p3DEffEle[multbin][6],p3DEffPos[multbin][6],mom,the,phi,chg,false,false);
                    if (isinf(eff_multbin) || isnan(eff_multbin)) eff_multbin = 0.;
                    if (random.Uniform(1) > eff_multbin) {
                        if (kine1->getID() == 3) {
                            vem_eff_multbin.push_back(new HGeantKine(*kine1));
                        }
                        if (kine1->getID() == 2) {
                            vep_eff_multbin.push_back(new HGeantKine(*kine1));
                        }
                    }
                }
            }
        }

        eventmixer.nextEvent();
        eventmixer.addVector(vep,2);
        eventmixer.addVector(vem,3);
        vector<pair<HGeantKine *, HGeantKine* > >& pairsVec_acc = eventmixer.getMixedVector();

        eventmixer_eff[0].nextEvent();
        eventmixer_eff[0].addVector(vep_eff,2);
        eventmixer_eff[0].addVector(vem_eff,3);
        vector<pair<HGeantKine *, HGeantKine* > >& pairsVec_eff = eventmixer_eff[0].getMixedVector();

        eventmixer_eff[multbin].nextEvent();
        eventmixer_eff[multbin].addVector(vep_eff,2);
        eventmixer_eff[multbin].addVector(vem_eff,3);
        vector<pair<HGeantKine *, HGeantKine* > >& pairsVec_eff_multbin = eventmixer_eff[multbin].getMixedVector();

        for (int imix = 0; imix < 3; ++imix) {
            vector<pair<HGeantKine *, HGeantKine* > > pairsVec;
            TString suffix;
            switch (imix) {
                case 0: 
                    pairsVec = pairsVec_acc;
                    suffix = TString(""); 
                    break;
                case 1: 
                    pairsVec = pairsVec_eff;
                    suffix = TString("_eff_multbin0");
                    break;
                case 2: 
                    pairsVec = pairsVec_eff_multbin;
                    suffix = TString("_eff_multbin")+TString::Itoa(multbin,10);
                    break;
            }
            size = pairsVec.size();

            for (Int_t j = 0; j < size; j ++) {
                pair<HGeantKine*,HGeantKine*>& pair = pairsVec[j];

                kine1 = pair.first;
                kine2 = pair.second;
                TLorentzVector vec1, vec2;
                HParticleTool::getTLorentzVector(kine1,vec1,kine1->getID());
                HParticleTool::getTLorentzVector(kine2,vec2,kine2->getID());

                Float_t mom1 = vec1.Vect().Mag();
                Float_t the1 = vec1.Theta()*TMath::RadToDeg();
                Float_t mom2 = vec2.Vect().Mag();
                Float_t the2 = vec2.Theta()*TMath::RadToDeg();

                TLorentzVector dilep = vec1 + vec2;
                Float_t oAngle = vec1.Angle(vec2.Vect())*TMath::RadToDeg();
                Float_t mass   = dilep.M()/1000;
                Float_t pt     = dilep.Perp();
                Float_t y      = dilep.Rapidity();
                Float_t mbinw  = hM.get("hmassNP")->GetBinWidth(hM.get("hmassNP")->FindBin(mass));

                if (oAngle < 9) continue;

                TString chg = "NP";
                if (kine1->getID() == kine2->getID()) {
                    if (kine1->getID() == 2) chg = "PP";
                    if (kine1->getID() == 3) chg = "NN";
                }

                hM.get( TString("hmass")      +chg+suffix)->Fill(mass,       1./mbinw);
                hM.get( TString("hoAngle")    +chg+suffix)->Fill(oAngle      );
                hM.get( TString("hy")         +chg+suffix)->Fill(y           );
                hM.get( TString("hpt")        +chg+suffix)->Fill(pt          );
                hM.get2(TString("hoAnglemass")+chg+suffix)->Fill(oAngle,mass,1./mbinw);
                hM.get2(TString("hoAnglept")  +chg+suffix)->Fill(oAngle,pt   );
                hM.get2(TString("hmasspt")    +chg+suffix)->Fill(mass,pt,    1./mbinw);
                hM.get2(TString("hoAngley")   +chg+suffix)->Fill(oAngle,y    );
                hM.get2(TString("hmassy")     +chg+suffix)->Fill(mass,y,     1./mbinw);
                hM.get2(TString("hpty")       +chg+suffix)->Fill(pt,y        );
                hM.get2(TString("hth1th2")    +chg+suffix)->Fill(the1,the2   );
                hM.get2(TString("hp1p2")      +chg+suffix)->Fill(mom1,mom2   );
            }
        }
//#define DELETE_MIX
#ifdef DELETE_MIX
        vector <HGeantKine *>* toDel = eventmixer.getObjectsToDelete();
        for (unsigned int ii = 0; ii < toDel->size(); ++ii) {
            delete toDel->at(ii);
        }
        toDel->clear();
        delete toDel;
        vector <HGeantKine *>* toDel_eff = eventmixer_eff[0].getObjectsToDelete();
        for (unsigned int ii = 0; ii < toDel_eff->size(); ++ii) {
            delete toDel_eff->at(ii);
        }
        toDel_eff->clear();
        delete toDel_eff;
        vector <HGeantKine *>* toDel_eff_multbin = eventmixer_eff[multbin].getObjectsToDelete();
        for (unsigned int ii = 0; ii < toDel_eff_multbin->size(); ++ii) {
            delete toDel_eff_multbin->at(ii);
        }
        toDel_eff_multbin->clear();
        delete toDel_eff_multbin;
#endif

    } // end event loop

    timer.Stop();

    hM.getFile()->cd();
    TMacro m1(__DIELEANA_FILE__);
    m1.Write();
    hM.writeHists("nomap");

    cout<<"####################################################"<<endl;
    return 0;
}