void TensorMath::SMS(const Tensor& source, Tensor& target) { #ifdef BUILD_OPENCL if(source.cl_gpu_ || target.cl_gpu_) { ((Tensor&)source).MoveToGPU(); target.MoveToGPU(true); const int width = target.width(); const int height = target.height(); const int maps = target.maps(); const int samples = target.samples(); cl_uint error = 0; error |= clSetKernelArg (CLHelper::k_sms, 0, sizeof (cl_mem), &(((Tensor&)source).cl_data_ptr_)); error |= clSetKernelArg (CLHelper::k_sms, 1, sizeof (cl_mem), &(target.cl_data_ptr_)); error |= clSetKernelArg (CLHelper::k_sms, 2, sizeof (cl_uint), &width); error |= clSetKernelArg (CLHelper::k_sms, 3, sizeof (cl_uint), &height); error |= clSetKernelArg (CLHelper::k_sms, 4, sizeof (cl_uint), &maps); error |= clSetKernelArg (CLHelper::k_sms, 5, sizeof (cl_uint), &samples); if (error != CL_SUCCESS) { FATAL("Error setting kernel args: " << (signed int) error); } size_t global_work_size[] = {(size_t)target.elements()}; error = clEnqueueNDRangeKernel (CLHelper::queue, CLHelper::k_sms, 1, NULL, global_work_size, NULL, 0, NULL, NULL); if (error != CL_SUCCESS) { FATAL("Error enqueueing kernel: " << (signed int) error); } #ifdef BRUTAL_FINISH error = clFinish (CLHelper::queue); if (error != CL_SUCCESS) { FATAL("Error finishing command queue: " << (signed int) error); } #endif } else { #endif const int width = target.width(); const int height = target.height(); const int maps = target.maps(); const int samples = target.samples(); for(int sample = 0; sample < samples; sample++) { for(int map = 0; map < maps; map++) { const datum* src = source.data_ptr_const(0, 0, sample, map); datum* tgt = target.data_ptr(0, 0, map, sample); std::memcpy(tgt, src, sizeof(datum) * width * height); } } #ifdef BUILD_OPENCL } #endif target.hint_ignore_content_ = false; }
void TensorMath::UP(const Tensor& source, Tensor& target, const int region_width, const int region_height, const datum target_factor) { #ifdef BUILD_OPENCL if(source.cl_gpu_ || target.cl_gpu_) { ((Tensor&)source).MoveToGPU(); target.MoveToGPU(true); const int target_width = target.width(); const int target_height = target.height(); const int source_width = source.width(); const int source_height = source.height(); cl_uint error = 0; error |= clSetKernelArg (CLHelper::k_up, 0, sizeof (cl_mem), &(((Tensor&)source).cl_data_ptr_)); error |= clSetKernelArg (CLHelper::k_up, 1, sizeof (cl_mem), &(target.cl_data_ptr_)); error |= clSetKernelArg (CLHelper::k_up, 2, sizeof (cl_uint), &target_width); error |= clSetKernelArg (CLHelper::k_up, 3, sizeof (cl_uint), &target_height); error |= clSetKernelArg (CLHelper::k_up, 4, sizeof (cl_uint), &source_width); error |= clSetKernelArg (CLHelper::k_up, 5, sizeof (cl_uint), &source_height); error |= clSetKernelArg (CLHelper::k_up, 6, sizeof (cl_uint), ®ion_width); error |= clSetKernelArg (CLHelper::k_up, 7, sizeof (cl_uint), ®ion_height); error |= clSetKernelArg (CLHelper::k_up, 8, sizeof (cl_float), &target_factor); if (error != CL_SUCCESS) { FATAL("Error setting kernel args: " << (signed int) error); } size_t global_work_size[] = {(size_t)target.width(), (size_t)target.height(), (size_t)(target.maps() * target.samples())}; error = clEnqueueNDRangeKernel (CLHelper::queue, CLHelper::k_up, 3, NULL, global_work_size, NULL, 0, NULL, NULL); if (error != CL_SUCCESS) { FATAL("Error enqueueing kernel: " << (signed int) error); } #ifdef BRUTAL_FINISH error = clFinish (CLHelper::queue); if (error != CL_SUCCESS) { FATAL("Error finishing command queue: " << (signed int) error); } #endif } else { #endif const int width = source.width(); const int height = source.height(); const int maps = source.maps(); const int samples = source.samples(); for(int sample = 0; sample < samples; sample++) { for(int map = 0; map < maps; map++) { for(unsigned int y = 0; y < height; y++) { const unsigned int iy = region_height * y; for(unsigned int x = 0; x < width; x++) { const unsigned int ix = region_width * x; const datum* src = source.data_ptr_const(x, y, map, sample); datum sum = *src; for(unsigned int ry = 0; ry < region_height; ry++) { for(unsigned int rx = 0; rx < region_width; rx++) { datum* tgt = target.data_ptr(ix + rx, iy + ry, map, sample); *tgt = sum * target_factor; } } } } } } #ifdef BUILD_OPENCL } #endif target.hint_ignore_content_ = false; }
void TensorMath::COL2IM(Tensor& source, const int source_width, const int source_height, const int maps, const int samples, const int kernel_width, const int kernel_height, const int stride_width, const int stride_height, const int pad_width, const int pad_height, const Tensor& target) { #ifdef BUILD_OPENCL if(source.cl_gpu_ || target.cl_gpu_) { ((Tensor&)target).MoveToGPU(); source.MoveToGPU(true); cl_uint error = 0; const int target_width = (2 * pad_width + source_width - kernel_width) / stride_width + 1; const int target_height = (2 * pad_height + source_height - kernel_height) / stride_height + 1; const int target_maps = kernel_width * kernel_height * maps; error |= clSetKernelArg (CLHelper::k_col2im, 0, sizeof (cl_mem), &(((Tensor&)source).cl_data_ptr_)); error |= clSetKernelArg (CLHelper::k_col2im, 1, sizeof (cl_mem), &(target.cl_data_ptr_)); error |= clSetKernelArg (CLHelper::k_col2im, 2, sizeof (cl_int), &source_width); error |= clSetKernelArg (CLHelper::k_col2im, 3, sizeof (cl_int), &source_height); error |= clSetKernelArg (CLHelper::k_col2im, 4, sizeof (cl_int), &maps); error |= clSetKernelArg (CLHelper::k_col2im, 5, sizeof (cl_int), &samples); error |= clSetKernelArg (CLHelper::k_col2im, 6, sizeof (cl_int), &target_width); error |= clSetKernelArg (CLHelper::k_col2im, 7, sizeof (cl_int), &target_height); error |= clSetKernelArg (CLHelper::k_col2im, 8, sizeof (cl_int), &target_maps); error |= clSetKernelArg (CLHelper::k_col2im, 9, sizeof (cl_int), &kernel_width); error |= clSetKernelArg (CLHelper::k_col2im, 10, sizeof (cl_int), &kernel_height); error |= clSetKernelArg (CLHelper::k_col2im, 11, sizeof (cl_int), &stride_width); error |= clSetKernelArg (CLHelper::k_col2im, 12, sizeof (cl_int), &stride_height); error |= clSetKernelArg (CLHelper::k_col2im, 13, sizeof (cl_int), &pad_width); error |= clSetKernelArg (CLHelper::k_col2im, 14, sizeof (cl_int), &pad_height); if (error != CL_SUCCESS) { FATAL("Error setting kernel args: " << (signed int) error); } size_t global_work_size[] = {(size_t)(source_width * source_height), (size_t)maps, (size_t)samples}; error = clEnqueueNDRangeKernel (CLHelper::queue, CLHelper::k_col2im, 3, NULL, global_work_size, NULL, 0, NULL, NULL); if (error != CL_SUCCESS) { FATAL("Error enqueueing kernel: " << (signed int) error); } #ifdef BRUTAL_FINISH error = clFinish (CLHelper::queue); if (error != CL_SUCCESS) { FATAL("Error finishing command queue: " << (signed int) error); } #endif } else { ((Tensor&)target).MoveToCPU(); source.MoveToCPU(true); #endif SETSAMPLE(source, -1, 0.0); const int target_width = (2 * pad_width + source_width - kernel_width) / stride_width + 1; const int target_height = (2 * pad_height + source_height - kernel_height) / stride_height + 1; const int target_maps = kernel_width * kernel_height * maps; const int target_size = samples * target_width * target_height * target_maps; const int actual_target_size = target.samples() * target.width()* target.height() * target.maps(); if(target_size != actual_target_size) FATAL("Target size wrong!"); for(int sample = 0; sample < samples; sample++) { datum* source_ptr = source.data_ptr(0, 0, 0, sample); for(int target_map = 0; target_map < target_maps; target_map++) { const datum* target_ptr = target.data_ptr_const(0, 0, 0, target_map); int kx = target_map % kernel_width; int ky = (target_map / kernel_width) % kernel_height; int imap = target_map / (kernel_width * kernel_height); for(int oy = 0; oy < target_height; oy++) { int iy = oy * stride_height - pad_height + ky; if(iy >= 0 && iy < source_height) { for(int ox = 0; ox < target_width; ox++) { int ix = ox * stride_width - pad_width + kx; if(ix >= 0 && iy < source_width) { source_ptr[(imap * source_height + iy) * source_width + ix] += target_ptr[(sample * target_height + oy) * target_width + ox]; } } } } } } #ifdef BUILD_OPENCL } #endif source.hint_ignore_content_ = false; }