double test6() { string t0[] = {"101", "011", "101", "010"}; vector <string> p0(t0, t0+sizeof(t0)/sizeof(string)); TheMatrix * obj = new TheMatrix(); clock_t start = clock(); int my_answer = obj->MaxArea(p0); clock_t end = clock(); delete obj; cout <<"Time: " <<(double)(end-start)/CLOCKS_PER_SEC <<" seconds" <<endl; int p1 = 8; cout <<"Desired answer: " <<endl; cout <<"\t" << p1 <<endl; cout <<"Your answer: " <<endl; cout <<"\t" << my_answer <<endl; if (p1 != my_answer) { cout <<"DOESN'T MATCH!!!!" <<endl <<endl; return -1; } else { cout <<"Match :-)" <<endl <<endl; return (double)(end-start)/CLOCKS_PER_SEC; } }
/** The subgradient is chosen as sgn(w) */ void CL1N1::ComputeRegAndGradient(CModel& model, double& reg, TheMatrix& grad) { reg = 0; TheMatrix &w = model.GetW(); w.Norm1(reg); grad.Zero(); for(int i=0; i<w.Length(); i++) { double val = 0; w.Get(i,val); grad.Set(i,SML::sgn(val)); } }
/** * Compute loss and partial derivative of hinge loss w.r.t f * * @param loss [write] loss value computed. * @param f [r/w] = X*w * @param l [write] partial derivative of loss w.r.t. f */ void CLogisticLoss::LossAndGrad(double& loss, TheMatrix& f, TheMatrix& l) { l.Zero(); // for gradient computation i.e. grad := l'*X f.ElementWiseMult(_data->labels()); double* f_array = f.Data(); // pointer to memory location of f (faster element access) int len = f.Length(); double exp_yf = 0.0; for(int i=0; i < len; i++) { if(fabs(f_array[i]) == 0.0) { loss += LN2; l.Set(i,-0.5); } else if (f_array[i] > 0.0) { exp_yf = exp(-f_array[i]); loss += log(1+exp_yf); l.Set(i,-exp_yf/(1+exp_yf)); } else { exp_yf = exp(f_array[i]); loss += log(1+exp_yf) - f_array[i]; l.Set(i,-1.0/(1+exp_yf)); } } l.ElementWiseMult(_data->labels()); }
/** * Compute loss and gradient of Least Absolute Deviation loss w.r.t f * * @param loss [write] loss value computed. * @param f [r/w] = X*w * @param l [write] partial derivative of loss w.r.t. f */ void CLeastAbsDevLoss::LossAndGrad(double& loss, TheMatrix& f, TheMatrix& l) { loss = 0; l.Zero(); double *Y_array = _data->labels().Data(); double* f_array = f.Data(); int len = f.Length(); for(int i=0; i < len; i++) { double f_minus_y = f_array[i] - Y_array[i]; loss += fabs(f_minus_y); l.Set(i, SML::sgn(f_minus_y)); } }
/** * Compute loss and gradient of novelty detection loss. * CAUTION: f is passed by reference and is changed within this * function. This is done for efficiency reasons, otherwise we would * have had to create a new copy of f. * * @param loss [write] loss value computed. * @param f [read/write] prediction vector. * @param l [write] partial derivative of loss function w.r.t. f */ void CNoveltyLoss::LossAndGrad(double& loss, TheMatrix& f, TheMatrix& l) { double* f_array = f.Data(); // pointer to memory location of f (faster element access) int len = f.Length(); l.Zero(); // grad := l'*X for(int i=0; i < len; i++) { if(rho > f_array[i]) { loss += rho - f_array[i]; l.Set(i, -1.0); } } }
/** * Compute NDCGRank loss. CAUTION: f is passed by reference and is * changed within this function. This is done for efficiency reasons, * otherwise we would have had to create a new copy of f. * * @param loss [write] loss value computed. * @param f [read/write] prediction vector. */ void CNDCGRankLoss::Loss(Scalar& loss, TheMatrix& f) { // chteo: here we make use of the subset information loss = 0.0; Scalar* f_array = f.Data(); for(int q=0; q < _data->NumOfSubset(); q++) { int offset = _data->subset[q].startIndex; int subsetsize = _data->subset[q].size; current_ideal_pi = sort_vectors[q]; vector<double> b = bs[q]; //compute_coefficients(offset, subsetsize, y_array, current_ideal_pi, a, b); /* find the best permutation */ find_permutation(subsetsize, offset, a, b, c, f_array, pi); /* compute the loss */ double value; delta(subsetsize, a, b, pi, value); loss += value; for (int i=0;i<subsetsize;i++){ loss = loss + c[i]*(get(f_array, offset, pi[i]) - get(f_array, offset, i)); } //free(c); //free(a); //free(b); //free(pi); } }
/** * Compute hinge loss. CAUTION: f is passed by reference and is * changed within this function. This is done for efficiency reasons, * otherwise we would have had to create a new copy of f. * * @param loss [write] loss value computed. * @param f [read/write] prediction vector. */ void CLogisticLoss::Loss(double& loss, TheMatrix& f) { loss = 0; f.ElementWiseMult(_data->labels()); // f = y*f double* f_array = f.Data(); // pointer to memory location of f (faster element access) int len = f.Length(); for(int i=0; i < len; i++) { if(fabs(f_array[i]) == 0.0) loss += LN2; else if (f_array[i] > 0.0) loss += log(1+exp(-f_array[i])); else loss += log(1+exp(f_array[i])) - f_array[i]; } }
void CL2N2::ComputeRegAndGradient(CModel& model, double& reg, TheMatrix& grad) { reg = 0; TheMatrix &w = model.GetW(); w.Norm2(reg); reg = 0.5*reg*reg; grad.Assign(w); }
/** * Compute loss and partial derivative of NDCGRank loss w.r.t f * * @param loss [write] loss value computed. * @param f [r/w] = X*w * @param l [write] partial derivative of loss w.r.t. f */ void CNDCGRankLoss::LossAndGrad(Scalar& loss, TheMatrix& f, TheMatrix& l) { // chteo: here we make use of the subset information loss = 0.0; l.Zero(); Scalar* f_array = f.Data(); for(int q=0; q < _data->NumOfSubset(); q++) { //cout << "q = "<< q <<endl; int offset = _data->subset[q].startIndex; int subsetsize = _data->subset[q].size; current_ideal_pi = sort_vectors[q]; vector<double> b = bs[q]; //compute_coefficients(offset, subsetsize, y_array, current_ideal_pi, a, b); //cout << "before finding permutation\n"; /* find the best permutation */ find_permutation(subsetsize, offset, a, b, c, f_array, pi); //cout << "after finding permutation\n"; //cout << "before finding delta\n"; /* compute the loss */ double value; delta(subsetsize, a, b, pi, value); //cout << "before finding delta\n"; loss += value; for (int i=0;i<subsetsize;i++){ loss = loss + c[i]*(get(f_array, offset, pi[i]) - get(f_array, offset, i)); } for (int i=0;i<subsetsize;i++){ //add(l, offset, i, c[pi[i]] - c[i]); add(l, offset, i, - c[i]); add(l, offset, pi[i], c[i]); } } }
/** Flag = 0: marginloss, no label loss. The label loss will always be zero 1: marginloss, and label loss. */ void CSMMMulticlassLoss::ComputeLoss(vector<unsigned int> y, vector<unsigned int> ylabel, vector<unsigned int> ybar, vector<unsigned int> ybarlabel, const CSeqMulticlassFeature::seqfeature_struct &x, const TheMatrix &w, double & marginloss, double & labelloss, int flag) { unsigned int i; double w_dot_phi1 = 0; double w_dot_phi2 = 0; marginloss = 0; unsigned int start; if(is_first_phi1_used) start = 0; else start = 1; for(i=start; i < ybar.size(); i++) { _data->TensorPhi1(x.phi_1[ybar[i]],ybarlabel[i],0,tphi_1); //tphi_1->Print(); w.Dot(*(tphi_1), w_dot_phi1); marginloss += w_dot_phi1; //printf("%d(%d):%2.4f\t",ybar[i],ybarlabel[i],marginloss); } for(i=1;i<ybar.size();i++) { int vb = 0; _data->TensorPhi2(x.phi_2[ybar[i-1]][ybar[i]-ybar[i-1]-1], ybarlabel[i-1], ybarlabel[i], 0,vb,tphi_2); w.Dot(*(tphi_2), w_dot_phi2); marginloss += w_dot_phi2; } if(ybar.size() > 0) { //grad.Add(*(X[i].phi_2[ybar[ybar.size()-1]][X[i].len-1 - ybar[ybar.size()-1]-1]));//// _data->TensorPhi2(x.phi_2[ybar[ybar.size()-1]][x.len - ybar[ybar.size()-1]-1 ], ybarlabel[ybar.size()-1], 0, 0,0,tphi_2); w.Dot(*(tphi_2), w_dot_phi2); marginloss += w_dot_phi2; } //vector <unsigned int> yss = Boundry2StatSequence(y,ylabel,x.len); //vector <unsigned int> ybarss = Boundry2StatSequence(ybar,ybarlabel,x.len); //labelloss = Labelloss(yss,ybarss); labelloss = AllDelta(ybar,y,ybarlabel,ylabel,x.len); }
// BEGIN KAWIGIEDIT TESTING // Generated by KawigiEdit 2.1.4 (beta) modified by pivanof bool KawigiEdit_RunTest(int testNum, vector <string> p0, bool hasAnswer, int p1) { cout << "Test " << testNum << ": [" << "{"; for (int i = 0; int(p0.size()) > i; ++i) { if (i > 0) { cout << ","; } cout << "\"" << p0[i] << "\""; } cout << "}"; cout << "]" << endl; TheMatrix *obj; int answer; obj = new TheMatrix(); clock_t startTime = clock(); answer = obj->MaxArea(p0); clock_t endTime = clock(); delete obj; bool res; res = true; cout << "Time: " << double(endTime - startTime) / CLOCKS_PER_SEC << " seconds" << endl; if (hasAnswer) { cout << "Desired answer:" << endl; cout << "\t" << p1 << endl; } cout << "Your answer:" << endl; cout << "\t" << answer << endl; if (hasAnswer) { res = answer == p1; } if (!res) { cout << "DOESN'T MATCH!!!!" << endl; } else if (double(endTime - startTime) / CLOCKS_PER_SEC >= 2) { cout << "FAIL the timeout" << endl; res = false; } else if (hasAnswer) { cout << "Match :-)" << endl; } else { cout << "OK, but is it right?" << endl; } cout << "" << endl; return res; }
void CBMRM::DisplayAfterTrainingInfo(unsigned int iter, double finalExactObjVal, double approxObjVal, double loss, TheMatrix& w_best, CTimer& lossAndGradientTime, CTimer& innerSolverTime, CTimer& totalTime) { // legends if(verbosity >= 1) { printf("\n[Legends]\n"); if(verbosity > 1) printf("pobj: primal objective function value" "\naobj: approximate objective function value\n"); printf("gam: gamma (approximation error) " "\neps: lower bound on gam " "\nloss: loss function value " "\nreg: regularizer value\n"); } double norm1 = 0, norm2 = 0, norminf = 0; w_best.Norm1(norm1); w_best.Norm2(norm2); w_best.NormInf(norminf); printf("\nNote: the final w is the w_t where J(w_t) is the smallest.\n"); printf("No. of iterations: %d\n",iter); printf("Primal obj. val.: %.6e\n",finalExactObjVal); printf("Approx obj. val.: %.6e\n",approxObjVal); printf("Primal - Approx.: %.6e\n",finalExactObjVal-approxObjVal); printf("Loss: %.6e\n",loss); printf("|w|_1: %.6e\n",norm1); printf("|w|_2: %.6e\n",norm2); printf("|w|_oo: %.6e\n",norminf); // display timing profile printf("\nCPU seconds in:\n"); printf("1. loss and gradient: %8.2f\n", lossAndGradientTime.CPUTotal()); printf("2. solver: %8.2f\n", innerSolverTime.CPUTotal()); printf(" Total: %8.2f\n", totalTime.CPUTotal()); printf("Wall-clock total: %8.2f\n", totalTime.WallclockTotal()); }
/** * Compute loss and gradient of Huber hinge loss. * CAUTION: f is passed by reference and is changed within this * function. This is done for efficiency reasons, otherwise we would * have had to create a new copy of f. * * @param loss [write] loss value computed. * @param f [read/write] prediction vector. * @param l [write] partial derivative of loss function w.r.t. f */ void CHuberHingeLoss::LossAndGrad(double& loss, TheMatrix& f, TheMatrix& l) { f.ElementWiseMult(_data->labels()); double* yf = f.Data(); double* Y = _data->labels().Data(); int len = f.Length(); loss = 0.0; l.Zero(); for(int i=0; i < len; i++) { double v = 1-yf[i]; if(h < v) { loss += v; l.Set(i,-Y[i]); } else if(-h > v) {} else { loss += (v+h)*(v+h)/4/h; l.Set(i, -Y[i]*(v+h)/2/h); } } }
void CGenericLoss::ComputeLossAndGradient(double& loss, TheMatrix& grad) { loss = 0; grad.Zero(); TheMatrix &w = _model->GetW(); double* dat = w.Data(); double* raw_g = grad.Data(); { double* resy; double* resybar; map<int,int> ybar; resy = new double [data->dim()]; resybar = new double [data->dim()]; minimize(data->nodeFeatures, &(data->nodeLabels), data->edgeFeatures, dat, dat + data->nNodeFeatures, ybar, data->nNodeFeatures, data->nEdgeFeatures, data->lossPositive, data->lossNegative, data->indexEdge, NULL, 1, data->firstOrderResponses); Phi(data->nodeFeatures, &(data->nodeLabels), data->edgeFeatures, data->nNodeFeatures, data->nEdgeFeatures, resy, resy + data->nNodeFeatures, data->indexEdge); Phi(data->nodeFeatures, &ybar, data->edgeFeatures, data->nNodeFeatures, data->nEdgeFeatures, resybar, resybar + data->nNodeFeatures, data->indexEdge); loss += LabelLoss(data->nodeLabels, ybar, data->lossPositive, data->lossNegative, LOSS); for (int j = 0; j < (int) data->dim(); j ++) { loss += dat[j]*(resybar[j]-resy[j]); raw_g[j] += (1.0/data->N)*(resybar[j]-resy[j]); } delete [] resy; delete [] resybar; } loss = loss/data->N; }
/** Compute loss and gradient */ void CSMMMulticlassLoss::ComputeLossAndGradient(double& loss, TheMatrix& grad) { iterNum ++; TheMatrix &w = _model->GetW(); loss = 0; grad.Zero(); TheMatrix g(grad, SML::DENSE); const vector<CSeqMulticlassLabel::seqlabel_struct> &Y = _data->labels(); const vector<CSeqMulticlassFeature::seqfeature_struct> &X = _data->features(); unsigned int trainExNum = 0; vector <int > cvmark = _data->Getcvmark(); for(unsigned int i=0; i < m; i++) { if(cvmark.size()!=0) { if(cvmark[i]!=SMM::TRAIN_DATA) continue; } trainExNum ++; //if(cvmark) vector<unsigned int> ybar(X[i].len,0); vector<unsigned int> ybarlabel(X[i].len,0); double labelloss = 0; double marginloss = 0; double w_dot_g = 0.0;; // find best label y' and return the score wrt to y' if(verbosity>=2) { cout <<"ex:"<< i<< endl;fflush(stdout); } if(is_single_action_persequence) find_best_label_grammer(Y[i].pos,Y[i].type, X[i], w, ybar, ybarlabel, marginloss, labelloss, 0, _data->getNumOfClass()); else find_best_label(Y[i].pos,Y[i].type, X[i], w, ybar, ybarlabel, marginloss, labelloss, 0, _data->getNumOfClass()); double labelloss_y = 0; double marginloss_y = 0; double labelloss_ybar = 0; double marginloss_ybar = 0; ComputeLoss(Y[i].pos,Y[i].type,ybar,ybarlabel,X[i],w,marginloss_ybar,labelloss_ybar,1); if(lossw[0]!=0) labelloss+=lossw[0]; if(lastDuration>0) { marginloss = marginloss_ybar; labelloss = labelloss_ybar; } if(verbosity>=3) { ComputeLoss(Y[i].pos,Y[i].type,Y[i].pos,Y[i].type,X[i],w,marginloss_y,labelloss_y,1); printf("dp------marginloss:%2.4f---labelloss:%2.4f------\n",marginloss,labelloss); printf("ybar----marginloss:%2.4f---labelloss:%2.4f------\n",marginloss_ybar,labelloss_ybar); printf("y-------marginloss:%2.4f---labelloss:%2.4f------\n",marginloss_y,labelloss_y); if(abs(labelloss_ybar-labelloss)>1e-5) { printf("labelloss doesn't match!\n"); //exit(0); } if(abs(marginloss_ybar-marginloss)>1e-5) { printf("marginloss_ybar_dp:%2.4f != marginloss_ybar_computeLoss:%2.4f\n",marginloss,marginloss_ybar); printf("marginloss doesn't match!\n"); } } // construct the gradient vector for the part of true y const vector<unsigned int> &y = Y[i].pos; const vector<unsigned int> &ylabel = Y[i].type; g.Zero(); for(unsigned int j=0; j < y.size(); j++) { //g.Add(*(X[i].phi_1[y[j]])); //g.Add(*(X[i].phi_2[y[j-1]][y[j]-y[j-1]-1])); _data->TensorPhi1(X[i].phi_1[y[j]],ylabel[j],0,tphi_1); g.Add(*tphi_1); if(j > 0) { _data->TensorPhi2(X[i].phi_2[y[j-1]][y[j]-y[j-1]-1], ylabel[j-1], ylabel[j], 0,0,tphi_2); g.Add(*tphi_2); } } if(y.size() > 0) { //g.Add(*(X[i].phi_2[y[y.size()-1]][X[i].len-1 - y[y.size()-1]-1]));//// _data->TensorPhi2(X[i].phi_2[y[y.size()-1]][X[i].len - y[y.size()-1]-1 ], ylabel[y.size()-1], 0,0,0,tphi_2); g.Add(*tphi_2); } // for predicted y' for(unsigned int j=0; j < ybar.size(); j++) { //grad.Add(*(X[i].phi_1[ybar[j]])); //grad.Add(*(X[i].phi_2[ybar[j-1]][ybar[j]-ybar[j-1]-1])); _data->TensorPhi1(X[i].phi_1[ybar[j]],ybarlabel[j],0,tphi_1); grad.Add(*tphi_1); if(j>0) { _data->TensorPhi2(X[i].phi_2[ybar[j-1]][ybar[j]-ybar[j-1]-1], ybarlabel[j-1], ybarlabel[j], 0,0,tphi_2); grad.Add(*tphi_2); //// } } if(ybar.size() > 0) { //grad.Add(*(X[i].phi_2[ybar[ybar.size()-1]][X[i].len-1 - ybar[ybar.size()-1]-1])); _data->TensorPhi2(X[i].phi_2[ybar[ybar.size()-1]][X[i].len - ybar[ybar.size()-1]-1 ], ybarlabel[ybar.size()-1], 0, 0,0,tphi_2); grad.Add(*tphi_2); } grad.Minus(g); // accumulate the loss w.Dot(g, w_dot_g); loss = loss - w_dot_g + marginloss + labelloss; } scalingFactor = 1.0/trainExNum; grad.Scale(scalingFactor); loss *= scalingFactor; if(verbosity) { double gnorm = 0.0; grad.Norm2(gnorm); cout << "gradient norm=" << gnorm << endl; } //Evaluate(_model); }
void CNDCGRankLoss::add(TheMatrix &l, int offset, int i, double value){ Scalar temp; l.Get(offset + current_ideal_pi[i], temp); l.Set(offset + current_ideal_pi[i], temp + value); }
/** find best label with a grammer(with label loss): g(w) := max_y' <w,\phi(x,y')> + Delta(y', y) * * @param x [read] sequence * @param y [read] actual label for x * @param w [read] weight vector * @param ybar [write] found best label * @param marginloss [write] margin loss <w,\Phi(x,y')> w.r.t to best y' * @param labelloss [write] label loss \Delta(y',y) w.r.t. to best y' * */ void CSMMMulticlassLoss::find_best_label_grammer(const vector<unsigned int> &y,const vector<unsigned int> &ylabel, const CSeqMulticlassFeature::seqfeature_struct &x, const TheMatrix &w, vector<unsigned int> &ybar,vector<unsigned int> &ybarlabel, double &marginloss, double &labelloss, unsigned int personid, unsigned int classNum) { // reset return values marginloss = 0; labelloss = 0; ybar.clear(); ybarlabel.clear(); /** The margin value vector used in dynamic programming */ vector< vector<double> > M (x.len+1,vector<double> (classNum,0)); /** The label loss value vector used in dynamic programming */ vector< vector<double> > L (x.len+1,vector<double> (classNum,0)); /** The back pointers vector used in dynamic programming to retrieve the optimal path */ // The positions vector< vector<int> > A (x.len+1,vector<int> (classNum,-1)); // The class labels vector< vector<int> > C (x.len+1,vector<int> (classNum,0)); double maxval = -SML::INFTY; double w_dot_phi1 = 0; double w_dot_phi2 = 0; double marginval = 0; double labelval = 0; unsigned int right = 0; unsigned int left = 0; unsigned int start = 0; unsigned int end = 0; unsigned int classID = 0; unsigned int classIDPrev = 0; double sum = 0; // compute DP statistics for positions 1 to len-1 // L[0] += y.size()-2; // A[1] = 0; for(classID=0;classID<classNum;classID++) { A[1][classID] = 0; //C[1][classID] = 0; } //debug //printf("x.len:%d",x.len); if(is_first_phi1_used) { right =0; for(classID=0;classID<classNum;classID++) { maxval = -SML::INFTY; w_dot_phi1 = 0.0; _data->TensorPhi1(x.phi_1[right],classID,0,tphi_1); //tphi_1->Print(); w.Dot(*(tphi_1), w_dot_phi1); marginval = w_dot_phi1; sum = marginval; if(sum > maxval) { M[right][classID] = marginval; maxval = sum; } } } for(right=1; right < x.len+1; right++) { for(classID=0;classID<classNum;classID++) { // \Phi = (phi1, phi2[left,right]) // <w, \Phi> = <w,phi1> + <w,phi[left,right]> maxval = -SML::INFTY; w_dot_phi1 = 0.0; //w.Dot(*(x.phi_1[right]), w_dot_phi1); //printf("pos:%d,classid:%d ",right,classID);fflush(stdout); //x.phi_1[right]->Print(); if(right<x.len) { _data->TensorPhi1(x.phi_1[right],classID,0,tphi_1); //tphi_1->Print(); w.Dot(*(tphi_1), w_dot_phi1); } start = max(0,int(right-maxDuration)); //end = right;//-minDuration+1; if(lastDuration>0) { unsigned int lastpos = x.len-lastDuration+1 ; end = MIN(right,lastpos); } else end = right; for(left=start; left < end; left++) { classIDPrev = classID; labelval = PartialDelta(left,right,y,ylabel,classIDPrev,x.len); assert( (labelval<=x.len) && (labelval>=0) ); int vb = 0; _data->TensorPhi2(x.phi_2[left][right-left-1], classIDPrev, classID, 0,vb,tphi_2); w.Dot(*(tphi_2), w_dot_phi2); marginval = w_dot_phi1 + w_dot_phi2; sum = M[left][classIDPrev]+marginval + L[left][classIDPrev]+labelval; if(sum > maxval) { A[right][classID] = left; C[right][classID] = classIDPrev; M[right][classID] = M[left][classIDPrev] + marginval; L[right][classID] = L[left][classIDPrev] + labelval; maxval = sum; } } } } // get optimal path (i.e. segmentation) unsigned int pos,prepos,classid,preclassid; int maxclassid = 0; maxval = -SML::INFTY; for(unsigned int i=0;i<classNum;i++) { sum = M[x.len][i] + L[x.len][i]; if(sum>maxval) { maxval = sum; maxclassid = i; } } pos = A[x.len][maxclassid]; classid = C[x.len][maxclassid]; if(lastDuration>0) { pos = x.len-lastDuration; classid = 0; } ybar.push_back(pos); ybarlabel.push_back(classid); prepos = pos; preclassid = classid; while(A[pos][classid] >= 0) { pos = A[prepos][preclassid]; classid = C[prepos][preclassid]; ybar.push_back(pos);//positions ybarlabel.push_back(classid);//class labels //printf("%d(%d):%2.4f ",pos,classid,L[pos][classid]);fflush(stdout); prepos = pos; preclassid = classid; } marginloss = M[x.len][maxclassid]; labelloss = L[x.len][maxclassid]; //printf("finished back track\n labelloss:%3.4f,marginloss:%3.4f\n",labelloss,marginloss);fflush(stdout); reverse(ybar.begin(), ybar.end()); reverse(ybarlabel.begin(), ybarlabel.end()); //printf("reversed\n");fflush(stdout); unsigned int i; if(verbosity>=2) { printf("y: "); for(i=0;i<y.size();i++) { printf("%d(%d) ",y[i],ylabel[i]); } fflush(stdout); printf("\nybar:"); for(i=0;i<ybar.size();i++) { printf("%d(%d) ",ybar[i],ybarlabel[i]); } fflush(stdout); printf("\nmargin:%f, loss:%f, totalloss:%f\n",marginloss,labelloss,marginloss+labelloss); } }
/** find best label (without label loss): g(w) := max_y' <w,\phi(x,y')> * * @param x [read] sequence * @param w [read] weight vector * @param ybar [write] found best label * @param marginloss [write] margin loss <w,\Phi(x,y')> w.r.t to best y' */ void CSMMMulticlassLoss::find_best_label_grammer(const CSeqMulticlassFeature::seqfeature_struct &x, const TheMatrix &w, vector<unsigned int> &ybar, vector<unsigned int> &ybarlabel, double &marginloss, unsigned int personid, unsigned int classNum) { using namespace std; // reset return values marginloss = 0; ybar.clear(); ybarlabel.clear(); /** The margin value vector used in dynamic programming */ vector< vector<double> > M (x.len+1,vector<double> (classNum,0)); /** The back pointers vector used in dynamic programming to retrieve the optimal path */ // The positions vector< vector<int> > A (x.len+1,vector<int> (classNum,-1)); // The class labels vector< vector<int> > C (x.len+1,vector<int> (classNum,0)); double maxval = -SML::INFTY; double w_dot_phi1 = 0; double w_dot_phi2 = 0; double marginval = 0; unsigned int right = 0; unsigned int left = 0; unsigned int start = 0; unsigned int end = 0; unsigned int classID = 0; unsigned int classIDPrev = 0; double sum = 0; // compute DP statistics for positions 1 to len-1 for(classID=0;classID<classNum;classID++) { A[1][classID] = 0; //C[1][classID] = 0; } if(is_first_phi1_used) { right =0; for(classID=0;classID<classNum;classID++) { maxval = -SML::INFTY; w_dot_phi1 = 0.0; _data->TensorPhi1(x.phi_1[right],classID,0,tphi_1); //tphi_1->Print(); w.Dot(*(tphi_1), w_dot_phi1); marginval = w_dot_phi1; sum = marginval; if(sum > maxval) { M[right][classID] = marginval; maxval = sum; } } } for(right=1; right < x.len+1; right++) { for(classID=0;classID<classNum;classID++) { // \Phi = (phi1, phi2[left,right]) // <w, \Phi> = <w,phi1> + <w,phi[left,right]> maxval = -SML::INFTY; w_dot_phi1 = 0.0; if(right<x.len) { _data->TensorPhi1(x.phi_1[right],classID,0,tphi_1); w.Dot(*(tphi_1), w_dot_phi1); } start = max(0,int(right-maxDuration)); //end = right;//-minDuration+1; if(lastDuration>0) { unsigned int lastpos = x.len-lastDuration+1 ; end = MIN(right,lastpos); } else end = right; for(left=start; left < end; left++) { classIDPrev = classID; int vb = 0; _data->TensorPhi2(x.phi_2[left][right-left-1], classIDPrev, classID, 0,vb,tphi_2); w.Dot(*(tphi_2), w_dot_phi2); marginval = w_dot_phi1 + w_dot_phi2; sum = M[left][classIDPrev]+marginval; if(sum > maxval) { A[right][classID] = left; C[right][classID] = classIDPrev; M[right][classID] = M[left][classIDPrev] + marginval; maxval = sum; } } } } // get optimal path (i.e. segmentation) unsigned int pos,prepos,classid,preclassid; int maxclassid = 0; maxval = -SML::INFTY; for(unsigned int i=0;i<classNum;i++) { sum = M[x.len][i]; if(sum>maxval) { maxval = sum; maxclassid = i; } } pos = A[x.len][maxclassid]; classid = C[x.len][maxclassid]; if(lastDuration>0) { pos = x.len-lastDuration; classid = 0; } ybar.push_back(pos); ybarlabel.push_back(classid); prepos = pos; preclassid = classid; while(A[pos][classid] >= 0) { pos = A[prepos][preclassid]; classid = C[prepos][preclassid]; ybar.push_back(pos);//positions ybarlabel.push_back(classid);//class labels prepos = pos; preclassid = classid; } marginloss = M[x.len][maxclassid]; reverse(ybar.begin(), ybar.end()); reverse(ybarlabel.begin(), ybarlabel.end()); }
int main(int argc, char* argv[]) { if (argc<4) { printf("usage: %s foundkey bitpos framecount (framecount2 burst2)\n", argv[0]); return -1; } unsigned framecount = 0; uint64_t stop; sscanf(argv[1],"%lux",&stop); int pos; sscanf(argv[2],"%i",&pos); Bidirectional back; TheMatrix tm; back.doPrintCand(false); sscanf(argv[3],"%i",&framecount); uint64_t stop_val = Bidirectional::ReverseBits(stop); printf("#### Found potential key (bits: %i)####\n", pos); stop_val = back.Forwards(stop_val, 100, NULL); back.ClockBack( stop_val, 101+pos ); uint64_t tst; unsigned char bytes[16]; char out[115]; out[114]='\0'; int x = 0; printf("Framecount is %i\n", framecount); unsigned framecount2 = -1; if (argc>=6) { if (strlen(argv[5]) != 114) { fprintf(stderr, "burst2 must be a 114 digit bitstring\n"); exit(1); } sscanf(argv[4],"%i",&framecount2); } while (back.PopCandidate(tst)) { uint64_t orig = tm.CountUnmix(tst, framecount); orig = tm.KeyUnmix(orig); printf("KC(%i): ", x); for(int i=7; i>=0; i--) { printf("%02x ",(unsigned)(orig>>(8*i))&0xff); } x++; if (framecount2>=0) { uint64_t mix = tm.KeyMix(orig); mix = tm.CountMix(mix,framecount2); mix = back.Forwards(mix, 101, NULL); back.Forwards(mix, 114, bytes); int ok = 0; for (int bit=0;bit<114;bit++) { int byte = bit / 8; int b = bit & 0x7; int v = bytes[byte] & (1<<(7-b)); char check = v ? '1' : '0'; if (check==argv[5][bit]) ok++; } if (ok>104) { printf(" *** MATCHED ***"); } else { printf(" mismatch"); } } printf("\n"); #if 0 uint64_t mixed = back.Forwards(tst, 101, NULL); back.Forwards(mixed, 114, bytes); for (int bit=0;bit<114;bit++) { int byte = bit / 8; int b = bit & 0x7; int v = bytes[byte] & (1<<(7-b)); out[bit] = v ? '1' : '0'; } printf("cipher %s\n", out); #endif } }