int main(int argc, char** argv) { std::string arg; std::vector<std::string> args(argc - 1 > 1 ? argc - 1 : 1); args[0] = "all"; for (int ix = 1; ix < argc; ix++) { args[ix - 1] = std::string(argv[ix]); } if (getenv("VALGRIND") != 0) { // lower the scale of every test WEIGHT = 1; } bool runAll = args[0].compare("all") == 0; if (runAll || args[0].compare("thread-factory") == 0) { ThreadFactoryTests threadFactoryTests; std::cout << "ThreadFactory tests..." << std::endl; int reapLoops = 2 * WEIGHT; int reapCount = 100 * WEIGHT; size_t floodLoops = 3; size_t floodCount = 500 * WEIGHT; std::cout << "\t\tThreadFactory reap N threads test: N = " << reapLoops << "x" << reapCount << std::endl; if (!threadFactoryTests.reapNThreads(reapLoops, reapCount)) { std::cerr << "\t\ttThreadFactory reap N threads FAILED" << std::endl; return 1; } std::cout << "\t\tThreadFactory flood N threads test: N = " << floodLoops << "x" << floodCount << std::endl; if (!threadFactoryTests.floodNTest(floodLoops, floodCount)) { std::cerr << "\t\ttThreadFactory flood N threads FAILED" << std::endl; return 1; } std::cout << "\t\tThreadFactory synchronous start test" << std::endl; if (!threadFactoryTests.synchStartTest()) { std::cerr << "\t\ttThreadFactory synchronous start FAILED" << std::endl; return 1; } std::cout << "\t\tThreadFactory monitor timeout test" << std::endl; if (!threadFactoryTests.monitorTimeoutTest()) { std::cerr << "\t\ttThreadFactory monitor timeout FAILED" << std::endl; return 1; } } if (runAll || args[0].compare("util") == 0) { std::cout << "Util tests..." << std::endl; std::cout << "\t\tUtil minimum time" << std::endl; int64_t time00 = Util::currentTime(); int64_t time01 = Util::currentTime(); std::cout << "\t\t\tMinimum time: " << time01 - time00 << "ms" << std::endl; time00 = Util::currentTime(); time01 = time00; size_t count = 0; while (time01 < time00 + 10) { count++; time01 = Util::currentTime(); } std::cout << "\t\t\tscall per ms: " << count / (time01 - time00) << std::endl; } if (runAll || args[0].compare("timer-manager") == 0) { std::cout << "TimerManager tests..." << std::endl; std::cout << "\t\tTimerManager test00" << std::endl; TimerManagerTests timerManagerTests; if (!timerManagerTests.test00()) { std::cerr << "\t\tTimerManager tests FAILED" << std::endl; return 1; } std::cout << "\t\tTimerManager test01" << std::endl; if (!timerManagerTests.test01()) { std::cerr << "\t\tTimerManager tests FAILED" << std::endl; return 1; } std::cout << "\t\tTimerManager test02" << std::endl; if (!timerManagerTests.test02()) { std::cerr << "\t\tTimerManager tests FAILED" << std::endl; return 1; } } if (runAll || args[0].compare("thread-manager") == 0) { std::cout << "ThreadManager tests..." << std::endl; { size_t workerCount = 10 * WEIGHT; size_t taskCount = 500 * WEIGHT; int64_t delay = 10LL; ThreadManagerTests threadManagerTests; std::cout << "\t\tThreadManager api test:" << std::endl; if (!threadManagerTests.apiTest()) { std::cerr << "\t\tThreadManager apiTest FAILED" << std::endl; return 1; } std::cout << "\t\tThreadManager load test: worker count: " << workerCount << " task count: " << taskCount << " delay: " << delay << std::endl; if (!threadManagerTests.loadTest(taskCount, delay, workerCount)) { std::cerr << "\t\tThreadManager loadTest FAILED" << std::endl; return 1; } std::cout << "\t\tThreadManager block test: worker count: " << workerCount << " delay: " << delay << std::endl; if (!threadManagerTests.blockTest(delay, workerCount)) { std::cerr << "\t\tThreadManager blockTest FAILED" << std::endl; return 1; } } } if (runAll || args[0].compare("thread-manager-benchmark") == 0) { std::cout << "ThreadManager benchmark tests..." << std::endl; { size_t minWorkerCount = 2; size_t maxWorkerCount = 8; size_t tasksPerWorker = 100 * WEIGHT; int64_t delay = 5LL; for (size_t workerCount = minWorkerCount; workerCount <= maxWorkerCount; workerCount *= 4) { size_t taskCount = workerCount * tasksPerWorker; std::cout << "\t\tThreadManager load test: worker count: " << workerCount << " task count: " << taskCount << " delay: " << delay << std::endl; ThreadManagerTests threadManagerTests; if (!threadManagerTests.loadTest(taskCount, delay, workerCount)) { std::cerr << "\t\tThreadManager loadTest FAILED" << std::endl; return 1; } } } } std::cout << "ALL TESTS PASSED" << std::endl; return 0; }
int main(int argc, char** argv) { std::string arg; std::vector<std::string> args(argc - 1 > 1 ? argc - 1 : 1); args[0] = "all"; for (int ix = 1; ix < argc; ix++) { args[ix - 1] = std::string(argv[ix]); } bool runAll = args[0].compare("all") == 0; if (runAll || args[0].compare("thread-factory") == 0) { ThreadFactoryTests threadFactoryTests; std::cout << "ThreadFactory tests..." << std::endl; size_t count = 1000; size_t floodLoops = 1; size_t floodCount = 100000; std::cout << "\t\tThreadFactory reap N threads test: N = " << count << std::endl; assert(threadFactoryTests.reapNThreads(count)); std::cout << "\t\tThreadFactory floodN threads test: N = " << floodCount << std::endl; assert(threadFactoryTests.floodNTest(floodLoops, floodCount)); std::cout << "\t\tThreadFactory synchronous start test" << std::endl; assert(threadFactoryTests.synchStartTest()); std::cout << "\t\tThreadFactory monitor timeout test" << std::endl; assert(threadFactoryTests.monitorTimeoutTest()); } if (runAll || args[0].compare("util") == 0) { std::cout << "Util tests..." << std::endl; std::cout << "\t\tUtil minimum time" << std::endl; int64_t time00 = Util::currentTime(); int64_t time01 = Util::currentTime(); std::cout << "\t\t\tMinimum time: " << time01 - time00 << "ms" << std::endl; time00 = Util::currentTime(); time01 = time00; size_t count = 0; while (time01 < time00 + 10) { count++; time01 = Util::currentTime(); } std::cout << "\t\t\tscall per ms: " << count / (time01 - time00) << std::endl; } if (runAll || args[0].compare("timer-manager") == 0) { std::cout << "TimerManager tests..." << std::endl; std::cout << "\t\tTimerManager test00" << std::endl; TimerManagerTests timerManagerTests; assert(timerManagerTests.test00()); } if (runAll || args[0].compare("thread-manager") == 0) { std::cout << "ThreadManager tests..." << std::endl; { size_t workerCount = 100; size_t taskCount = 100000; int64_t delay = 10LL; std::cout << "\t\tThreadManager load test: worker count: " << workerCount << " task count: " << taskCount << " delay: " << delay << std::endl; ThreadManagerTests threadManagerTests; assert(threadManagerTests.loadTest(taskCount, delay, workerCount)); std::cout << "\t\tThreadManager block test: worker count: " << workerCount << " delay: " << delay << std::endl; assert(threadManagerTests.blockTest(delay, workerCount)); } } if (runAll || args[0].compare("thread-manager-benchmark") == 0) { std::cout << "ThreadManager benchmark tests..." << std::endl; { size_t minWorkerCount = 2; size_t maxWorkerCount = 512; size_t tasksPerWorker = 1000; int64_t delay = 10LL; for (size_t workerCount = minWorkerCount; workerCount < maxWorkerCount; workerCount*= 2) { size_t taskCount = workerCount * tasksPerWorker; std::cout << "\t\tThreadManager load test: worker count: " << workerCount << " task count: " << taskCount << " delay: " << delay << std::endl; ThreadManagerTests threadManagerTests; threadManagerTests.loadTest(taskCount, delay, workerCount); } } } }