Example #1
0
TEST(Core_UMat, getUMat)
{
    {
        int a[3] = { 1, 2, 3 };
        Mat m = Mat(1, 1, CV_32SC3, a);
        UMat u = m.getUMat(ACCESS_READ);
        EXPECT_NE((void*)NULL, u.u);
    }

    {
        Mat m(10, 10, CV_8UC1), ref;
        for (int y = 0; y < m.rows; ++y)
        {
            uchar * const ptr = m.ptr<uchar>(y);
            for (int x = 0; x < m.cols; ++x)
                ptr[x] = (uchar)(x + y * 2);
        }

        ref = m.clone();
        Rect r(1, 1, 8, 8);
        ref(r).setTo(17);

        {
            UMat um = m(r).getUMat(ACCESS_WRITE);
            um.setTo(17);
        }

        double err = norm(m, ref, NORM_INF);
        if (err > 0)
        {
            std::cout << "m: " << std::endl << m << std::endl;
            std::cout << "ref: " << std::endl << ref << std::endl;
        }
        EXPECT_EQ(0., err);
    }
}
Example #2
0
    bool BTVL1_Base::ocl_process(InputArrayOfArrays _src, OutputArray _dst, InputArrayOfArrays _forwardMotions,
                                 InputArrayOfArrays _backwardMotions, int baseIdx)
    {
        std::vector<UMat> & src = *(std::vector<UMat> *)_src.getObj(),
                & forwardMotions = *(std::vector<UMat> *)_forwardMotions.getObj(),
                & backwardMotions = *(std::vector<UMat> *)_backwardMotions.getObj();

        // update blur filter and btv weights
        if (!filter_ || blurKernelSize_ != curBlurKernelSize_ || blurSigma_ != curBlurSigma_ || src[0].type() != curSrcType_)
        {
            filter_ = createGaussianFilter(src[0].type(), Size(blurKernelSize_, blurKernelSize_), blurSigma_);
            curBlurKernelSize_ = blurKernelSize_;
            curBlurSigma_ = blurSigma_;
            curSrcType_ = src[0].type();
        }

        if (btvWeights_.empty() || btvKernelSize_ != curBtvKernelSize_ || alpha_ != curAlpha_)
        {
            calcBtvWeights(btvKernelSize_, alpha_, btvWeights_);
            Mat(btvWeights_, true).copyTo(ubtvWeights_);

            curBtvKernelSize_ = btvKernelSize_;
            curAlpha_ = alpha_;
        }

        // calc high res motions
        calcRelativeMotions(forwardMotions, backwardMotions, ulowResForwardMotions_, ulowResBackwardMotions_, baseIdx, src[0].size());

        upscaleMotions(ulowResForwardMotions_, uhighResForwardMotions_, scale_);
        upscaleMotions(ulowResBackwardMotions_, uhighResBackwardMotions_, scale_);

        uforwardMaps_.resize(uhighResForwardMotions_.size());
        ubackwardMaps_.resize(uhighResForwardMotions_.size());
        for (size_t i = 0; i < uhighResForwardMotions_.size(); ++i)
            buildMotionMaps(uhighResForwardMotions_[i], uhighResBackwardMotions_[i], uforwardMaps_[i], ubackwardMaps_[i]);

        // initial estimation
        const Size lowResSize = src[0].size();
        const Size highResSize(lowResSize.width * scale_, lowResSize.height * scale_);

        resize(src[baseIdx], uhighRes_, highResSize, 0, 0, INTER_LINEAR); // TODO

        // iterations
        udiffTerm_.create(highResSize, uhighRes_.type());
        ua_.create(highResSize, uhighRes_.type());
        ub_.create(highResSize, uhighRes_.type());
        uc_.create(lowResSize, uhighRes_.type());

        for (int i = 0; i < iterations_; ++i)
        {
            udiffTerm_.setTo(Scalar::all(0));

            for (size_t k = 0; k < src.size(); ++k)
            {
                // a = M * Ih
                remap(uhighRes_, ua_, ubackwardMaps_[k], noArray(), INTER_NEAREST);
                // b = HM * Ih
                GaussianBlur(ua_, ub_, Size(blurKernelSize_, blurKernelSize_), blurSigma_);
                // c = DHM * Ih
                resize(ub_, uc_, lowResSize, 0, 0, INTER_NEAREST);

                diffSign(src[k], uc_, uc_);

                // a = Dt * diff
                upscale(uc_, ua_, scale_);

                // b = HtDt * diff
                GaussianBlur(ua_, ub_, Size(blurKernelSize_, blurKernelSize_), blurSigma_);
                // a = MtHtDt * diff
                remap(ub_, ua_, uforwardMaps_[k], noArray(), INTER_NEAREST);

                add(udiffTerm_, ua_, udiffTerm_);
            }

            if (lambda_ > 0)
            {
                calcBtvRegularization(uhighRes_, uregTerm_, btvKernelSize_, btvWeights_, ubtvWeights_);
                addWeighted(udiffTerm_, 1.0, uregTerm_, -lambda_, 0.0, udiffTerm_);
            }

            addWeighted(uhighRes_, 1.0, udiffTerm_, tau_, 0.0, uhighRes_);
        }

        Rect inner(btvKernelSize_, btvKernelSize_, uhighRes_.cols - 2 * btvKernelSize_, uhighRes_.rows - 2 * btvKernelSize_);
        uhighRes_(inner).copyTo(_dst);

        return true;
    }