Example #1
0
void GreedyHeuristic::getGreedyHeuristicResult(UndirectedGraph* aTree, int cardinality, string ls_type) {

  UndirectedGraph* greedyTree = new UndirectedGraph();
  bool started = false;
  for (list<Edge*>::iterator anEdge = ((*graph).edges).begin(); anEdge != ((*graph).edges).end(); anEdge++) {
    greedyTree->clear();
    greedyTree->addVertex((*anEdge)->fromVertex());
    greedyTree->addVertex((*anEdge)->toVertex());
    greedyTree->addEdge(*anEdge);
    generateNeighborhoodFor(*anEdge);
    for (int k = 1; k < cardinality; k++) {
      Edge* kctn = getMinNeighbor();
      Vertex* nn = determineNeighborNode(kctn,greedyTree);
      greedyTree->addVertex(nn);
      greedyTree->addEdge(kctn);
      adaptNeighborhoodFor(kctn,nn,greedyTree);
    }
    if (!(ls_type == "no")) {
      
      /* application of local search */
      if (ls_type == "leafs") {
	LocalSearch lsm(graph,greedyTree);
	lsm.run(ls_type);
      }
      else {
	if (ls_type == "cycles_leafs") {
	  //cout << *greedyTree << endl;
	  LocalSearchB lsm;
	  lsm.run(graph,greedyTree);
	}
      }
      /* end local search */
      /*
      if (!isConnectedTree(greedyTree)) {
	cout << "non-connected tree" << endl;
      }
      */

    }
    greedyTree->setWeight(weightOfSolution(greedyTree));
    if (started == false) {
      started = true;
      aTree->copy(greedyTree);
    }
    else {
      if ((greedyTree->weight()) < (aTree->weight())) {
	aTree->copy(greedyTree);
      }
    }
  }
  delete(greedyTree);
}
Example #2
0
int main( int argc, char **argv ) {

    if ( argc < 2 ) {
        print_help();
        exit(1);
    }
    else {
        read_parameters(argc,argv);
    }

    // initialize random number generator

    rnd = new Random((unsigned) time(&t));

    // initialize and read instance from file

    graph = new UndirectedGraph(i_file);
    GreedyHeuristic gho(graph);

    for (int i = cardb; i <= carde; i++) {
        cardinality = i;
        if ((cardinality == cardb) || (cardinality == carde) || ((cardinality % cardmod) == 0)) {
            Timer timer;

            UndirectedGraph* greedyTree = new UndirectedGraph();
            if (type == "edge_based") {
                gho.getGreedyHeuristicResult(greedyTree,cardinality,ls);
            }
            else {
                if (type == "vertex_based") {
                    gho.getVertexBasedGreedyHeuristicResult(greedyTree,cardinality,ls);
                }
            }

            printf("%d\t%f\t%f\n",cardinality,greedyTree->weight(),timer.elapsed_time(Timer::VIRTUAL));

            delete(greedyTree);
        }
    }
    delete(graph);
    delete rnd;
}
Example #3
0
int main( int argc, char **argv ) {

    if ( argc < 2 ) {
        cout << "something wrong" << endl;
        exit(1);
    }
    else {
        read_parameters(argc,argv);
    }
    Timer initialization_timer;

    rnd = new Random((unsigned) time(&t));

    graph = new UndirectedGraph(i_file);

    init_pheromone_trail();

    register int i = 0;
    register int j = 0;
    register int k = 0;
    register int b = 0;

    cout << endl;
    for (int card_counter = cardb; card_counter <= carde; card_counter++) {
        cardinality = card_counter;
        if ((cardinality == cardb) || (cardinality == carde) || ((cardinality % cardmod) == 0)) {
            printf("begin cardinality %d\n",cardinality);

            if (tfile_is_given) {
                if (times.count(cardinality) == 1) {
                    time_limit = times[cardinality];
                }
            }
            vector<double> results;
            vector<double> times_best_found;
            double biar = 0.0;

            int n_of_ants = (int)(((double)((*graph).edges).size()) / ((double)cardinality));
            if (n_of_ants < 15) {
                n_of_ants = 15;
            }
            if (n_of_ants > 50) {
                n_of_ants = 50;
            }

            if (ants.size() > 0) {
                for (list<KCT_Ant*>::iterator anAnt = ants.begin(); anAnt != ants.end(); anAnt++) {
                    delete(*anAnt);
                }
            }
            ants.clear();

            for (i = 0; i < n_of_ants; i++) {
                KCT_Ant* ant = new KCT_Ant();
                ant->initialize(graph,rnd,pheromone,daemon_action);
                ants.push_back(ant);
            }

            for (int trial_counter = 1; trial_counter <= n_of_trials; trial_counter++) {
                printf("begin try %d\n",trial_counter);

                UndirectedGraph* best = NULL;
                UndirectedGraph* newSol = NULL;
                UndirectedGraph* restartBest = NULL;

                double ib_weight = 0.0;
                double rb_weight = 0.0;
                double gb_weight = 0.0;

                Timer timer;

                if ((!(card_counter == cardb)) || (!(trial_counter == 1))) {
                    reset_pheromone_trail();
                    for (list<KCT_Ant*>::iterator ant = ants.begin(); ant != ants.end(); ant++) {
                        (*ant)->restart_reset();
                    }
                }

                int iter = 1;
                double cf = 0.0;
                bool restart = false;
                bool program_stop = false;
                bool bs_update = false;

                while (program_stop == false) {

                    for (list<KCT_Ant*>::iterator ant = ants.begin(); ant != ants.end(); ant++) {
                        for (k = 0; k < cardinality; k++) {
                            (*ant)->step(0.8);
                        }
                        (*ant)->evaluate();
                    }

                    if (!(newSol == NULL)) {
                        delete(newSol);
                    }
                    if (elite_action == "no") {
                        newSol = getBestDaemonSolutionInIteration();
                    }
                    else {
                        KCT_Ant* bestAnt = getBestDaemonAntInIteration();
                        bestAnt->eliteAction();
                        newSol = new UndirectedGraph();
                        newSol->copy(bestAnt->getCurrentDaemonSolution());
                    }

                    if (iter == 1) {
                        best = new UndirectedGraph();
                        printf("best %f\ttime %f\n",newSol->weight(),timer.elapsed_time(Timer::VIRTUAL));
                        best->copy(newSol);
                        restartBest = new UndirectedGraph(newSol);
                        results.push_back(newSol->weight());
                        times_best_found.push_back(timer.elapsed_time(Timer::VIRTUAL));
                        if (trial_counter == 1) {
                            biar = newSol->weight();
                        }
                        else {
                            if (newSol->weight() < biar) {
                                biar = newSol->weight();
                            }
                        }
                    }
                    else {
                        if (restart) {
                            restart = false;
                            restartBest->copy(newSol);
                            if (newSol->weight() < best->weight()) {
                                printf("best %f\ttime %f\n",newSol->weight(),timer.elapsed_time(Timer::VIRTUAL));
                                best->copy(newSol);
                                results[trial_counter-1] = newSol->weight();
                                times_best_found[trial_counter-1] = timer.elapsed_time(Timer::VIRTUAL);
                                if (newSol->weight() < biar) {
                                    biar = newSol->weight();
                                }
                            }
                        }
                        else {
                            if (newSol->weight() < restartBest->weight()) {
                                restartBest->copy(newSol);
                            }
                            if (newSol->weight() < best->weight()) {
                                printf("best %f\ttime %f\n",newSol->weight(),timer.elapsed_time(Timer::VIRTUAL));
                                best->copy(newSol);
                                results[trial_counter-1] = newSol->weight();
                                times_best_found[trial_counter-1] = timer.elapsed_time(Timer::VIRTUAL);
                                if (newSol->weight() < biar) {
                                    biar = newSol->weight();
                                }
                            }
                        }
                    }

                    cf = get_cf(newSol);
                    //cout << "cf: " << cf << endl;

                    if (bs_update && (cf > 0.99)) {
                        //cout << "doing restart" << endl;
                        bs_update = false;
                        restart = true;
                        cf = 0.0;
                        reset_pheromone_trail();
                    }
                    else {

                        if (cf > 0.99) {
                            bs_update = true;
                        }

                        if (!bs_update) {
                            if (cf < 0.7) {
                                l_rate = 0.15;
                                ib_weight = 2.0/3.0;
                                rb_weight = 1.0/3.0;
                                gb_weight = 0.0;
                            }
                            if ((cf >= 0.7) && (cf < 0.95)) {
                                l_rate = 0.1;
                                ib_weight = 1.0 / 3.0;
                                rb_weight = 2.0 / 3.0;
                                gb_weight = 0.0;
                            }
                            if (cf >= 0.95) {
                                l_rate = 0.05;
                                ib_weight = 0.0;
                                rb_weight = 1.0;
                                gb_weight = 0.0;
                            }
                        }
                        else {
                            // if bs_update = TRUE we use the best_so_far solution for updating the pheromone values
                            l_rate = 0.1;
                            ib_weight = 0.0;
                            rb_weight = 0.0;
                            gb_weight = 1.0;
                        }

                        map<Edge*,double>* trans_best = translate_solution(best);
                        map<Edge*,double>* trans_newSol = translate_solution(newSol);
                        map<Edge*,double>* trans_restartBest = translate_solution(restartBest);
                        map<Edge*,double>* new_pd = new map<Edge*,double>;
                        for (list<Edge*>::iterator e = (graph->edges).begin(); e != (graph->edges).end(); e++) {
                            (*new_pd)[*e] = 0.0;
                            (*new_pd)[*e] = (*new_pd)[*e] + (ib_weight * (*trans_newSol)[*e]) + (rb_weight * (*trans_restartBest)[*e]) + (gb_weight * (*trans_best)[*e]);
                        }
                        for (list<Edge*>::iterator e = (graph->edges).begin(); e != (graph->edges).end(); e++) {
                            (*pheromone)[*e] = (*pheromone)[*e] + (l_rate * ((*new_pd)[*e] - (*pheromone)[*e]));
                            if ((*pheromone)[*e] > tau_max) {
                                (*pheromone)[*e] = tau_max;
                            }
                            if ((*pheromone)[*e] < tau_min) {
                                (*pheromone)[*e] = tau_min;
                            }
                        }
                        delete(trans_best);
                        delete(trans_newSol);
                        delete(trans_restartBest);
                        delete(new_pd);
                    }

                    for (list<KCT_Ant*>::iterator i = ants.begin(); i != ants.end(); i++) {
                        (*i)->reset();
                    }

                    iter = iter + 1;

                    if (tfile_is_given) {
                        if (timer.elapsed_time(Timer::VIRTUAL) > time_limit) {
                            program_stop = true;
                        }
                    }
                    else {
                        if (time_limit_given && iter_limit_given) {
                            if ((timer.elapsed_time(Timer::VIRTUAL) > time_limit) || (iter > n_of_iter)) {
                                program_stop = true;
                            }
                        }
                        else {
                            if (time_limit_given) {
                                if (timer.elapsed_time(Timer::VIRTUAL) > time_limit) {
                                    program_stop = true;
                                }
                            }
                            else {
                                if (iter > n_of_iter) {
                                    program_stop = true;
                                }
                            }
                        }
                    }
                }
                printf("end try %d\n",trial_counter);

                // eturetken 18.09.09. Write the best MST for this cardinality to the file.
                ////////////////////////////////////////////////////////////////////
                if( mstfile_is_given )
                {
                    string MSTFile(mst_file);
                    best->Write2File(concatIntToString(MSTFile, card_counter) + ".mst");
                }
                ////////////////////////////////////////////////////////////////////

                delete(best);
                delete(restartBest);
                delete(newSol);
            }

            double r_mean = 0.0;
            double t_mean = 0.0;
            for (int i = 0; i < results.size(); i++) {
                r_mean = r_mean + results[i];
                t_mean = t_mean + times_best_found[i];
            }
            r_mean = r_mean / ((double)results.size());
            t_mean = t_mean / ((double)times_best_found.size());
            double rsd = 0.0;
            double tsd = 0.0;
            for (int i = 0; i < results.size(); i++) {
                rsd = rsd + pow(results[i]-r_mean,2.0);
                tsd = tsd + pow(times_best_found[i]-t_mean,2.0);
            }
            rsd = rsd / ((double)(results.size()-1.0));
            if (rsd > 0.0) {
                rsd = sqrt(rsd);
            }
            tsd = tsd / ((double)(times_best_found.size()-1.0));
            if (tsd > 0.0) {
                tsd = sqrt(tsd);
            }
            if (output_file_given == true) {
                fout << cardinality << "\t" << r_mean << "\t" << rsd << "\t" << t_mean << "\t" << tsd << endl;
            }
            else {
                printf("statistics\t%d\t%g\t%f\t%f\t%f\t%f\n",cardinality,biar,r_mean,rsd,t_mean,tsd);
            }
            printf("end cardinality %d\n",cardinality);
        }
    }
    if (output_file_given == true) {
        fout.close();
    }
    delete(graph);
    delete rnd;
}