void inertialParametersVectorToUndirectedTreeLoop(const Eigen::VectorXd & parameters_vector, UndirectedTree & undirected_tree) { for(int i=0; i < (int)undirected_tree.getNrOfLinks(); i++ ) { undirected_tree.getLink(i,false)->setInertia(deVectorize(parameters_vector.segment(i*10,10))); } }
void inertialParametersVectorLoop(const UndirectedTree & undirected_tree, Eigen::VectorXd & parameters_vector) { for(int i=0; i < (int)undirected_tree.getNrOfLinks(); i++ ) { parameters_vector.segment(i*10,10) = Vectorize(undirected_tree.getLink(i)->getInertia()); } }
void inertialParametersVectorLoopFakeLinks(const UndirectedTree & undirected_tree, Eigen::VectorXd & parameters_vector, std::vector< std::string > fake_links_names) { int real_index_loop = 0; for(int i=0; i < (int)undirected_tree.getNrOfLinks(); i++ ) { if( std::find(fake_links_names.begin(), fake_links_names.end(), undirected_tree.getLink(i)->getName()) == fake_links_names.end() ) { parameters_vector.segment(real_index_loop*10,10) = Vectorize(undirected_tree.getLink(i)->getInertia()); real_index_loop++; } } }
void getFloatingBaseJacobianLoop(const UndirectedTree & undirected_tree, const GeneralizedJntPositions &q, const Traversal & traversal, const int link_index, Jacobian & jac) { Frame T_total = Frame::Identity(); //The transformation between link_index frame and current_link frame assert(link_index < (int)undirected_tree.getNrOfLinks()); KDL::CoDyCo::LinkMap::const_iterator current_link; current_link = undirected_tree.getLink(link_index); //All the columns not modified are zero SetToZero(jac); KDL::CoDyCo::LinkMap::const_iterator parent_link=traversal.getParentLink(current_link); while(current_link != traversal.getBaseLink()) { double joint_pos = 0.0; if( current_link->getAdjacentJoint(parent_link)->getNrOfDOFs() == 1 ) { KDL::Twist jac_col; int dof_index = current_link->getAdjacentJoint(parent_link)->getDOFIndex(); joint_pos = q.jnt_pos(dof_index); KDL::Twist S_current_parent = parent_link->S(current_link,joint_pos); jac_col = T_total*S_current_parent; assert(6+dof_index < (int)jac.columns()); assert( dof_index < (int)undirected_tree.getNrOfDOFs() ); jac.setColumn(6+dof_index,jac_col); } KDL::Frame X_current_parent = parent_link->pose(current_link,joint_pos); T_total = T_total*X_current_parent; current_link = parent_link; parent_link = traversal.getParentLink(current_link); } //Setting the floating part of the Jacobian T_total = T_total*KDL::Frame(q.base_pos.M.Inverse()); jac.data.block(0,0,6,6) = TwistTransformationMatrix(T_total); jac.changeBase(T_total.M.Inverse()); }
int crba_momentum_jacobian_loop(const UndirectedTree & undirected_tree, const Traversal & traversal, const JntArray & q, std::vector<RigidBodyInertia> & Ic, MomentumJacobian & H, RigidBodyInertia & InertiaCOM ) { #ifndef NDEBUG if( undirected_tree.getNrOfLinks() != traversal.getNrOfVisitedLinks() || undirected_tree.getNrOfDOFs() != q.rows() || Ic.size() != undirected_tree.getNrOfLinks() || H.columns() != (undirected_tree.getNrOfDOFs() + 6) ) { std::cerr << "crba_momentum_jacobian_loop: input data error" << std::endl; return -1; } #endif double q_; Wrench F = Wrench::Zero(); //Sweep from root to leaf for(int i=0; i<(int)traversal.getNrOfVisitedLinks(); i++) { LinkMap::const_iterator link_it = traversal.getOrderedLink(i); int link_index = link_it->getLinkIndex(); //Collect RigidBodyInertia Ic[link_index]=link_it->getInertia(); } for(int i=(int)traversal.getNrOfVisitedLinks()-1; i >= 1; i-- ) { int dof_id; LinkMap::const_iterator link_it = traversal.getOrderedLink(i); int link_index = link_it->getLinkIndex(); LinkMap::const_iterator parent_it = traversal.getParentLink(link_index); int parent_index = parent_it->getLinkIndex(); if( link_it->getAdjacentJoint(parent_it)->getNrOfDOFs() == 1 ) { dof_id = link_it->getAdjacentJoint(parent_it)->getDOFIndex(); q_ = q(dof_id); } else { q_ = 0.0; dof_id = -1; } Ic[parent_index] = Ic[parent_index]+link_it->pose(parent_it,q_)*Ic[link_index]; if( link_it->getAdjacentJoint(parent_it)->getNrOfDOFs() == 1 ) { KDL::Twist S_link_parent = parent_it->S(link_it,q_); F = Ic[link_index]*S_link_parent; if( traversal.getParentLink(link_it) != undirected_tree.getInvalidLinkIterator() ) { double q__; int dof_id_; LinkMap::const_iterator predecessor_it = traversal.getParentLink(link_it); LinkMap::const_iterator successor_it = link_it; while(true) { if( predecessor_it->getAdjacentJoint(successor_it)->getNrOfDOFs() == 1 ) { q__ = q( predecessor_it->getAdjacentJoint(successor_it)->getDOFIndex()); } else { q__ = 0.0; } F = successor_it->pose(predecessor_it,q__)*F; successor_it = predecessor_it; predecessor_it = traversal.getParentLink(predecessor_it); if( predecessor_it == undirected_tree.getInvalidLinkIterator() ) { break; } if( predecessor_it->getAdjacentJoint(successor_it)->getNrOfDOFs() == 1 ) { dof_id_ = predecessor_it->getAdjacentJoint(successor_it)->getDOFIndex(); q__ = q(dof_id_); } else { q__ = 0.0; dof_id_ = -1; } } if( dof_id >= 0 ) { H.data.block(0,6+dof_id,6,1) = toEigen(F); } //The first 6x6 submatrix of the Momentum Jacobian are simply the spatial inertia //of all the structure expressed in the base reference frame H.data.block(0,0,6,6) = toEigen(Ic[traversal.getBaseLink()->getLinkIndex()]); } } } //We have then to translate the reference point of the obtained jacobian to the com //The Ic[traversal.order[0]->getLink(index)] contain the spatial inertial of all the tree //expressed in link coordite frames Vector com = Ic[traversal.getBaseLink()->getLinkIndex()].getCOG(); H.changeRefPoint(com); InertiaCOM = Frame(com)*Ic[traversal.getBaseLink()->getLinkIndex()]; return 0; }