/* Returns: * 0 this member doesn't need further processing to determine struct size * 1 this member does */ static int func(Dsymbol *s, void *param) { SV *psv = (SV *)param; VarDeclaration *v = s->isVarDeclaration(); if (v) { if (v->scope) v->semantic(NULL); if (v->storage_class & (STCstatic | STCextern | STCtls | STCgshared | STCmanifest | STCctfe | STCtemplateparameter)) return 0; if (v->isField() && v->sem >= SemanticDone) return 0; return 1; } return 0; }
Expression *fromConstInitializer(Expression *e1) { //printf("fromConstInitializer(%s)\n", e1->toChars()); if (e1->op == TOKvar) { VarExp *ve = (VarExp *)e1; VarDeclaration *v = ve->var->isVarDeclaration(); if (v && !v->originalType && v->scope) // semantic() not yet run v->semantic (v->scope); if (v && v->isConst() && v->init) { Expression *ei = v->init->toExpression(); if (ei && ei->type) e1 = ei; } } return e1; }
/* Returns: * 0 this member doesn't need further processing to determine struct size * 1 this member does */ static int func(Dsymbol *s, void *param) { VarDeclaration *v = s->isVarDeclaration(); if (v) { /* Bugzilla 12799: enum a = ...; is a VarDeclaration and * STCmanifest is already set in parssing stage. So we can * check this before the semantic() call. */ if (v->storage_class & STCmanifest) return 0; if (v->scope) v->semantic(NULL); if (v->storage_class & (STCstatic | STCextern | STCtls | STCgshared | STCmanifest | STCctfe | STCtemplateparameter)) return 0; if (v->isField() && v->sem >= SemanticDone) return 0; return 1; } return 0; }
Expression *createTypeInfoArray(Scope *sc, Expression *exps[], size_t dim) { #if 1 /* * Pass a reference to the TypeInfo_Tuple corresponding to the types of the * arguments. Source compatibility is maintained by computing _arguments[] * at the start of the called function by offseting into the TypeInfo_Tuple * reference. */ Parameters *args = new Parameters; args->setDim(dim); for (size_t i = 0; i < dim; i++) { Parameter *arg = new Parameter(STCin, exps[i]->type, NULL, NULL); (*args)[i] = arg; } TypeTuple *tup = new TypeTuple(args); Expression *e = tup->getTypeInfo(sc); e = e->optimize(WANTvalue); assert(e->op == TOKsymoff); // should be SymOffExp return e; #else /* Improvements: * 1) create an array literal instead, * as it would eliminate the extra dereference of loading the * static variable. */ ArrayInitializer *ai = new ArrayInitializer(0); VarDeclaration *v; Type *t; Expression *e; OutBuffer buf; Identifier *id; char *name; // Generate identifier for _arguments[] buf.writestring("_arguments_"); for (int i = 0; i < dim; i++) { t = exps[i]->type; t->toDecoBuffer(&buf); } buf.writeByte(0); id = Lexer::idPool((char *)buf.data); Module *m = sc->module; Dsymbol *s = m->symtab->lookup(id); if (s && s->parent == m) { // Use existing one v = s->isVarDeclaration(); assert(v); } else { // Generate new one for (int i = 0; i < dim; i++) { t = exps[i]->type; e = t->getTypeInfo(sc); ai->addInit(new IntegerExp(i), new ExpInitializer(Loc(), e)); } t = Type::typeinfo->type->arrayOf(); ai->type = t; v = new VarDeclaration(0, t, id, ai); m->members->push(v); m->symtabInsert(v); sc = sc->push(); sc->linkage = LINKc; sc->stc = STCstatic | STCcomdat; ai->semantic(sc, t); v->semantic(sc); v->parent = m; sc = sc->pop(); } e = new VarExp(Loc(), v); e = e->semantic(sc); return e; #endif }
Expression *createTypeInfoArray(Scope *sc, Expression *exps[], int dim) { #if 1 /* Get the corresponding TypeInfo_Tuple and * point at its elements[]. */ /* Create the TypeTuple corresponding to the types of args[] */ Parameters *args = new Parameters; args->setDim(dim); for (size_t i = 0; i < dim; i++) { Parameter *arg = new Parameter(STCin, exps[i]->type, NULL, NULL); args->tdata()[i] = arg; } TypeTuple *tup = new TypeTuple(args); Expression *e = tup->getTypeInfo(sc); e = e->optimize(WANTvalue); assert(e->op == TOKsymoff); // should be SymOffExp #if BREAKABI /* * Should just pass a reference to TypeInfo_Tuple instead, * but that would require existing code to be recompiled. * Source compatibility can be maintained by computing _arguments[] * at the start of the called function by offseting into the * TypeInfo_Tuple reference. */ #else // Advance to elements[] member of TypeInfo_Tuple SymOffExp *se = (SymOffExp *)e; se->offset += PTRSIZE + PTRSIZE; // Set type to TypeInfo[]* se->type = Type::typeinfo->type->arrayOf()->pointerTo(); // Indirect to get the _arguments[] value e = new PtrExp(0, se); e->type = se->type->next; #endif return e; #else /* Improvements: * 1) create an array literal instead, * as it would eliminate the extra dereference of loading the * static variable. */ ArrayInitializer *ai = new ArrayInitializer(0); VarDeclaration *v; Type *t; Expression *e; OutBuffer buf; Identifier *id; char *name; // Generate identifier for _arguments[] buf.writestring("_arguments_"); for (int i = 0; i < dim; i++) { t = exps[i]->type; t->toDecoBuffer(&buf); } buf.writeByte(0); id = Lexer::idPool((char *)buf.data); Module *m = sc->module; Dsymbol *s = m->symtab->lookup(id); if (s && s->parent == m) { // Use existing one v = s->isVarDeclaration(); assert(v); } else { // Generate new one for (int i = 0; i < dim; i++) { t = exps[i]->type; e = t->getTypeInfo(sc); ai->addInit(new IntegerExp(i), new ExpInitializer(0, e)); } t = Type::typeinfo->type->arrayOf(); ai->type = t; v = new VarDeclaration(0, t, id, ai); m->members->push(v); m->symtabInsert(v); sc = sc->push(); sc->linkage = LINKc; sc->stc = STCstatic | STCcomdat; ai->semantic(sc, t); v->semantic(sc); v->parent = m; sc = sc->pop(); } e = new VarExp(0, v); e = e->semantic(sc); return e; #endif }
void VarDeclaration::semantic(Scope *sc) { #if 0 printf("VarDeclaration::semantic('%s', parent = '%s')\n", toChars(), sc->parent->toChars()); printf(" type = %s\n", type ? type->toChars() : "null"); printf(" stc = x%x\n", sc->stc); printf(" storage_class = x%x\n", storage_class); printf("linkage = %d\n", sc->linkage); //if (strcmp(toChars(), "mul") == 0) halt(); #endif storage_class |= sc->stc; if (storage_class & STCextern && init) error("extern symbols cannot have initializers"); AggregateDeclaration *ad = isThis(); if (ad) storage_class |= ad->storage_class & STC_TYPECTOR; /* If auto type inference, do the inference */ int inferred = 0; if (!type) { inuse++; type = init->inferType(sc); inuse--; inferred = 1; /* This is a kludge to support the existing syntax for RAII * declarations. */ storage_class &= ~STCauto; originalType = type; } else { if (!originalType) originalType = type; type = type->semantic(loc, sc); } //printf(" semantic type = %s\n", type ? type->toChars() : "null"); type->checkDeprecated(loc, sc); linkage = sc->linkage; this->parent = sc->parent; //printf("this = %p, parent = %p, '%s'\n", this, parent, parent->toChars()); protection = sc->protection; //printf("sc->stc = %x\n", sc->stc); //printf("storage_class = x%x\n", storage_class); #if DMDV2 if (storage_class & STCgshared && global.params.safe && !sc->module->safe) { error("__gshared not allowed in safe mode; use shared"); } #endif Dsymbol *parent = toParent(); FuncDeclaration *fd = parent->isFuncDeclaration(); Type *tb = type->toBasetype(); if (tb->ty == Tvoid && !(storage_class & STClazy)) { error("voids have no value"); type = Type::terror; tb = type; } if (tb->ty == Tfunction) { error("cannot be declared to be a function"); type = Type::terror; tb = type; } if (tb->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tb; if (!ts->sym->members) { error("no definition of struct %s", ts->toChars()); } } if ((storage_class & STCauto) && !inferred) error("storage class 'auto' has no effect if type is not inferred, did you mean 'scope'?"); if (tb->ty == Ttuple) { /* Instead, declare variables for each of the tuple elements * and add those. */ TypeTuple *tt = (TypeTuple *)tb; size_t nelems = Parameter::dim(tt->arguments); Objects *exps = new Objects(); exps->setDim(nelems); Expression *ie = init ? init->toExpression() : NULL; for (size_t i = 0; i < nelems; i++) { Parameter *arg = Parameter::getNth(tt->arguments, i); OutBuffer buf; buf.printf("_%s_field_%zu", ident->toChars(), i); buf.writeByte(0); const char *name = (const char *)buf.extractData(); Identifier *id = Lexer::idPool(name); Expression *einit = ie; if (ie && ie->op == TOKtuple) { einit = (Expression *)((TupleExp *)ie)->exps->data[i]; } Initializer *ti = init; if (einit) { ti = new ExpInitializer(einit->loc, einit); } VarDeclaration *v = new VarDeclaration(loc, arg->type, id, ti); //printf("declaring field %s of type %s\n", v->toChars(), v->type->toChars()); v->semantic(sc); #if !IN_LLVM // removed for LDC since TupleDeclaration::toObj already creates the fields; // adding them to the scope again leads to duplicates if (sc->scopesym) { //printf("adding %s to %s\n", v->toChars(), sc->scopesym->toChars()); if (sc->scopesym->members) sc->scopesym->members->push(v); } #endif Expression *e = new DsymbolExp(loc, v); exps->data[i] = e; } TupleDeclaration *v2 = new TupleDeclaration(loc, ident, exps); v2->isexp = 1; aliassym = v2; return; } if (storage_class & STCconst && !init && !fd) // Initialize by constructor only storage_class = (storage_class & ~STCconst) | STCctorinit; if (isConst()) { } else if (isStatic()) { } else if (isSynchronized()) { error("variable %s cannot be synchronized", toChars()); } else if (isOverride()) { error("override cannot be applied to variable"); } else if (isAbstract()) { error("abstract cannot be applied to variable"); } else if (storage_class & STCtemplateparameter) { } else if (storage_class & STCctfe) { } else { AggregateDeclaration *aad = sc->anonAgg; if (!aad) aad = parent->isAggregateDeclaration(); if (aad) { #if DMDV2 assert(!(storage_class & (STCextern | STCstatic | STCtls | STCgshared))); if (storage_class & (STCconst | STCimmutable) && init) { if (!type->toBasetype()->isTypeBasic()) storage_class |= STCstatic; } else #endif aad->addField(sc, this); } InterfaceDeclaration *id = parent->isInterfaceDeclaration(); if (id) { error("field not allowed in interface"); } /* Templates cannot add fields to aggregates */ TemplateInstance *ti = parent->isTemplateInstance(); if (ti) { // Take care of nested templates while (1) { TemplateInstance *ti2 = ti->tempdecl->parent->isTemplateInstance(); if (!ti2) break; ti = ti2; } // If it's a member template AggregateDeclaration *ad = ti->tempdecl->isMember(); if (ad && storage_class != STCundefined) { error("cannot use template to add field to aggregate '%s'", ad->toChars()); } } } #if DMDV2 if ((storage_class & (STCref | STCparameter | STCforeach)) == STCref && ident != Id::This) { error("only parameters or foreach declarations can be ref"); } #endif if (type->isscope() && !noscope) { if (storage_class & (STCfield | STCout | STCref | STCstatic) || !fd) { error("globals, statics, fields, ref and out parameters cannot be auto"); } if (!(storage_class & STCscope)) { if (!(storage_class & STCparameter) && ident != Id::withSym) error("reference to scope class must be scope"); } } enum TOK op = TOKconstruct; if (!init && !sc->inunion && !isStatic() && !isConst() && fd && !(storage_class & (STCfield | STCin | STCforeach)) && type->size() != 0) { // Provide a default initializer //printf("Providing default initializer for '%s'\n", toChars()); if (type->ty == Tstruct && ((TypeStruct *)type)->sym->zeroInit == 1) { /* If a struct is all zeros, as a special case * set it's initializer to the integer 0. * In AssignExp::toElem(), we check for this and issue * a memset() to initialize the struct. * Must do same check in interpreter. */ Expression *e = new IntegerExp(loc, 0, Type::tint32); Expression *e1; e1 = new VarExp(loc, this); e = new AssignExp(loc, e1, e); e->op = TOKconstruct; e->type = e1->type; // don't type check this, it would fail init = new ExpInitializer(loc, e); return; } else if (type->ty == Ttypedef) { TypeTypedef *td = (TypeTypedef *)type; if (td->sym->init) { init = td->sym->init; ExpInitializer *ie = init->isExpInitializer(); if (ie) // Make copy so we can modify it init = new ExpInitializer(ie->loc, ie->exp); } else init = getExpInitializer(); } else { init = getExpInitializer(); } // Default initializer is always a blit op = TOKblit; } if (init) { sc = sc->push(); sc->stc &= ~(STC_TYPECTOR | STCpure | STCnothrow | STCref); ArrayInitializer *ai = init->isArrayInitializer(); if (ai && tb->ty == Taarray) { init = ai->toAssocArrayInitializer(); } StructInitializer *si = init->isStructInitializer(); ExpInitializer *ei = init->isExpInitializer(); // See if initializer is a NewExp that can be allocated on the stack if (ei && isScope() && ei->exp->op == TOKnew) { NewExp *ne = (NewExp *)ei->exp; if (!(ne->newargs && ne->newargs->dim)) { ne->onstack = 1; onstack = 1; if (type->isBaseOf(ne->newtype->semantic(loc, sc), NULL)) onstack = 2; } } // If inside function, there is no semantic3() call if (sc->func) { // If local variable, use AssignExp to handle all the various // possibilities. if (fd && !isStatic() && !isConst() && !init->isVoidInitializer()) { //printf("fd = '%s', var = '%s'\n", fd->toChars(), toChars()); if (!ei) { Expression *e = init->toExpression(); if (!e) { init = init->semantic(sc, type); e = init->toExpression(); if (!e) { error("is not a static and cannot have static initializer"); return; } } ei = new ExpInitializer(init->loc, e); init = ei; } Expression *e1 = new VarExp(loc, this); Type *t = type->toBasetype(); if (t->ty == Tsarray && !(storage_class & (STCref | STCout))) { ei->exp = ei->exp->semantic(sc); if (!ei->exp->implicitConvTo(type)) { int dim = ((TypeSArray *)t)->dim->toInteger(); // If multidimensional static array, treat as one large array while (1) { t = t->nextOf()->toBasetype(); if (t->ty != Tsarray) break; dim *= ((TypeSArray *)t)->dim->toInteger(); e1->type = new TypeSArray(t->nextOf(), new IntegerExp(0, dim, Type::tindex)); } } e1 = new SliceExp(loc, e1, NULL, NULL); } else if (t->ty == Tstruct) { ei->exp = ei->exp->semantic(sc); ei->exp = resolveProperties(sc, ei->exp); StructDeclaration *sd = ((TypeStruct *)t)->sym; #if DMDV2 /* Look to see if initializer is a call to the constructor */ if (sd->ctor && // there are constructors ei->exp->type->ty == Tstruct && // rvalue is the same struct ((TypeStruct *)ei->exp->type)->sym == sd && ei->exp->op == TOKstar) { /* Look for form of constructor call which is: * *__ctmp.ctor(arguments...) */ PtrExp *pe = (PtrExp *)ei->exp; if (pe->e1->op == TOKcall) { CallExp *ce = (CallExp *)pe->e1; if (ce->e1->op == TOKdotvar) { DotVarExp *dve = (DotVarExp *)ce->e1; if (dve->var->isCtorDeclaration()) { /* It's a constructor call, currently constructing * a temporary __ctmp. */ /* Before calling the constructor, initialize * variable with a bit copy of the default * initializer */ Expression *e = new AssignExp(loc, new VarExp(loc, this), t->defaultInit(loc)); e->op = TOKblit; e->type = t; ei->exp = new CommaExp(loc, e, ei->exp); /* Replace __ctmp being constructed with e1 */ dve->e1 = e1; return; } } } } #endif if (!ei->exp->implicitConvTo(type)) { /* Look for opCall * See bugzilla 2702 for more discussion */ Type *ti = ei->exp->type->toBasetype(); // Don't cast away invariant or mutability in initializer if (search_function(sd, Id::call) && /* Initializing with the same type is done differently */ !(ti->ty == Tstruct && t->toDsymbol(sc) == ti->toDsymbol(sc))) { // Rewrite as e1.call(arguments) Expression * eCall = new DotIdExp(loc, e1, Id::call); ei->exp = new CallExp(loc, eCall, ei->exp); } } } ei->exp = new AssignExp(loc, e1, ei->exp); ei->exp->op = TOKconstruct; canassign++; ei->exp = ei->exp->semantic(sc); canassign--; ei->exp->optimize(WANTvalue); } else { init = init->semantic(sc, type); if (fd && isConst() && !isStatic()) { // Make it static storage_class |= STCstatic; } } } else if (isConst() || isFinal() || parent->isAggregateDeclaration()) { /* Because we may need the results of a const declaration in a * subsequent type, such as an array dimension, before semantic2() * gets ordinarily run, try to run semantic2() now. * Ignore failure. */ if (!global.errors && !inferred) { unsigned errors = global.errors; global.gag++; //printf("+gag\n"); Expression *e; Initializer *i2 = init; inuse++; if (ei) { e = ei->exp->syntaxCopy(); e = e->semantic(sc); e = e->implicitCastTo(sc, type); } else if (si || ai) { i2 = init->syntaxCopy(); i2 = i2->semantic(sc, type); } inuse--; global.gag--; //printf("-gag\n"); if (errors != global.errors) // if errors happened { if (global.gag == 0) global.errors = errors; // act as if nothing happened #if DMDV2 /* Save scope for later use, to try again */ scope = new Scope(*sc); scope->setNoFree(); #endif } else if (ei) { if (isDataseg() || (storage_class & STCmanifest)) e = e->optimize(WANTvalue | WANTinterpret); else e = e->optimize(WANTvalue); switch (e->op) { case TOKint64: case TOKfloat64: case TOKstring: case TOKarrayliteral: case TOKassocarrayliteral: case TOKstructliteral: case TOKnull: ei->exp = e; // no errors, keep result break; default: #if DMDV2 /* Save scope for later use, to try again */ scope = new Scope(*sc); scope->setNoFree(); #endif break; } } else init = i2; // no errors, keep result } } sc = sc->pop(); } }
Dsymbol *ArrayScopeSymbol::search(Loc loc, Identifier *ident, int flags) { //printf("ArrayScopeSymbol::search('%s', flags = %d)\n", ident->toChars(), flags); if (ident == Id::dollar) { VarDeclaration **pvar; Expression *ce; L1: if (td) { /* $ gives the number of elements in the tuple */ VarDeclaration *v = new VarDeclaration(loc, Type::tsize_t, Id::dollar, NULL); Expression *e = new IntegerExp(Loc(), td->objects->dim, Type::tsize_t); v->init = new ExpInitializer(Loc(), e); v->storage_class |= STCstatic | STCconst; v->semantic(sc); return v; } if (type) { /* $ gives the number of type entries in the type tuple */ VarDeclaration *v = new VarDeclaration(loc, Type::tsize_t, Id::dollar, NULL); Expression *e = new IntegerExp(Loc(), type->arguments->dim, Type::tsize_t); v->init = new ExpInitializer(Loc(), e); v->storage_class |= STCstatic | STCconst; v->semantic(sc); return v; } if (exp->op == TOKindex) { /* array[index] where index is some function of $ */ IndexExp *ie = (IndexExp *)exp; pvar = &ie->lengthVar; ce = ie->e1; } else if (exp->op == TOKslice) { /* array[lwr .. upr] where lwr or upr is some function of $ */ SliceExp *se = (SliceExp *)exp; pvar = &se->lengthVar; ce = se->e1; } else if (exp->op == TOKarray) { /* array[e0, e1, e2, e3] where e0, e1, e2 are some function of $ * $ is a opDollar!(dim)() where dim is the dimension(0,1,2,...) */ ArrayExp *ae = (ArrayExp *)exp; pvar = &ae->lengthVar; ce = ae->e1; } else /* Didn't find $, look in enclosing scope(s). */ return NULL; while (ce->op == TOKcomma) ce = ((CommaExp *)ce)->e2; /* If we are indexing into an array that is really a type * tuple, rewrite this as an index into a type tuple and * try again. */ if (ce->op == TOKtype) { Type *t = ((TypeExp *)ce)->type; if (t->ty == Ttuple) { type = (TypeTuple *)t; goto L1; } } /* *pvar is lazily initialized, so if we refer to $ * multiple times, it gets set only once. */ if (!*pvar) // if not already initialized { /* Create variable v and set it to the value of $ */ VarDeclaration *v; Type *t; if (ce->op == TOKtuple) { /* It is for an expression tuple, so the * length will be a const. */ Expression *e = new IntegerExp(Loc(), ((TupleExp *)ce)->exps->dim, Type::tsize_t); v = new VarDeclaration(loc, Type::tsize_t, Id::dollar, new ExpInitializer(Loc(), e)); v->storage_class |= STCstatic | STCconst; } else if (ce->type && (t = ce->type->toBasetype()) != NULL && (t->ty == Tstruct || t->ty == Tclass)) { // Look for opDollar assert(exp->op == TOKarray || exp->op == TOKslice); AggregateDeclaration *ad = NULL; if (t->ty == Tclass) { ad = ((TypeClass *)t)->sym; } else if (t->ty == Tstruct) { ad = ((TypeStruct *)t)->sym; } assert(ad); Dsymbol *s = ad->search(loc, Id::opDollar, 0); if (!s) // no dollar exists -- search in higher scope return NULL; s = s->toAlias(); Expression *e = NULL; // Check for multi-dimensional opDollar(dim) template. if (TemplateDeclaration *td = s->isTemplateDeclaration()) { dinteger_t dim; if (exp->op == TOKarray) { dim = ((ArrayExp *)exp)->currentDimension; } else if (exp->op == TOKslice) { dim = 0; // slices are currently always one-dimensional } Objects *tdargs = new Objects(); Expression *edim = new IntegerExp(Loc(), dim, Type::tsize_t); edim = edim->semantic(sc); tdargs->push(edim); //TemplateInstance *ti = new TemplateInstance(loc, td, tdargs); //ti->semantic(sc); e = new DotTemplateInstanceExp(loc, ce, td->ident, tdargs); } else { /* opDollar exists, but it's not a template. * This is acceptable ONLY for single-dimension indexing. * Note that it's impossible to have both template & function opDollar, * because both take no arguments. */ if (exp->op == TOKarray && ((ArrayExp *)exp)->arguments->dim != 1) { exp->error("%s only defines opDollar for one dimension", ad->toChars()); return NULL; } Declaration *d = s->isDeclaration(); assert(d); e = new DotVarExp(loc, ce, d); } e = e->semantic(sc); if (!e->type) exp->error("%s has no value", e->toChars()); t = e->type->toBasetype(); if (t && t->ty == Tfunction) e = new CallExp(e->loc, e); v = new VarDeclaration(loc, NULL, Id::dollar, new ExpInitializer(Loc(), e)); } else { /* For arrays, $ will either be a compile-time constant * (in which case its value in set during constant-folding), * or a variable (in which case an expression is created in * toir.c). */ VoidInitializer *e = new VoidInitializer(Loc()); e->type = Type::tsize_t; v = new VarDeclaration(loc, Type::tsize_t, Id::dollar, e); v->storage_class |= STCctfe; // it's never a true static variable } *pvar = v; } (*pvar)->semantic(sc); return (*pvar); } return NULL; }
Dsymbol *ArrayScopeSymbol::search(Loc loc, Identifier *ident, int flags) { //printf("ArrayScopeSymbol::search('%s', flags = %d)\n", ident->toChars(), flags); if (ident == Id::length || ident == Id::dollar) { VarDeclaration **pvar; Expression *ce; L1: if (td) { VarDeclaration *v = new VarDeclaration(loc, Type::tsize_t, Id::dollar, NULL); Expression *e = new IntegerExp(0, td->objects->dim, Type::tsize_t); v->init = new ExpInitializer(0, e); v->storage_class |= STCstatic | STCconst; v->semantic(sc); return v; } if (type) { VarDeclaration *v = new VarDeclaration(loc, Type::tsize_t, Id::dollar, NULL); Expression *e = new IntegerExp(0, type->arguments->dim, Type::tsize_t); v->init = new ExpInitializer(0, e); v->storage_class |= STCstatic | STCconst; v->semantic(sc); return v; } if (exp->op == TOKindex) { IndexExp *ie = (IndexExp *)exp; pvar = &ie->lengthVar; ce = ie->e1; } else if (exp->op == TOKslice) { SliceExp *se = (SliceExp *)exp; pvar = &se->lengthVar; ce = se->e1; } else return NULL; if (ce->op == TOKtype) { Type *t = ((TypeExp *)ce)->type; if (t->ty == Ttuple) { type = (TypeTuple *)t; goto L1; } } if (!*pvar) { VarDeclaration *v = new VarDeclaration(loc, Type::tsize_t, Id::dollar, NULL); if (ce->op == TOKvar) { // if ce is const, get its initializer ce = fromConstInitializer(WANTvalue | WANTinterpret, ce); } if (ce->op == TOKstring) { /* It is for a string literal, so the * length will be a const. */ Expression *e = new IntegerExp(0, ((StringExp *)ce)->len, Type::tsize_t); v->init = new ExpInitializer(0, e); v->storage_class |= STCstatic | STCconst; } else if (ce->op == TOKarrayliteral) { /* It is for an array literal, so the * length will be a const. */ Expression *e = new IntegerExp(0, ((ArrayLiteralExp *)ce)->elements->dim, Type::tsize_t); v->init = new ExpInitializer(0, e); v->storage_class |= STCstatic | STCconst; } else if (ce->op == TOKtuple) { /* It is for an expression tuple, so the * length will be a const. */ Expression *e = new IntegerExp(0, ((TupleExp *)ce)->exps->dim, Type::tsize_t); v->init = new ExpInitializer(0, e); v->storage_class |= STCstatic | STCconst; } *pvar = v; } (*pvar)->semantic(sc); return (*pvar); } return NULL; }
Dsymbol *ArrayScopeSymbol::search(Loc loc, Identifier *ident, int flags) { //printf("ArrayScopeSymbol::search('%s', flags = %d)\n", ident->toChars(), flags); if (ident == Id::length || ident == Id::dollar) { VarDeclaration **pvar; Expression *ce; if (ident == Id::length && !global.params.useDeprecated) error("using 'length' inside [ ] is deprecated, use '$' instead"); L1: if (td) { /* $ gives the number of elements in the tuple */ VarDeclaration *v = new VarDeclaration(loc, Type::tsize_t, Id::dollar, NULL); Expression *e = new IntegerExp(0, td->objects->dim, Type::tsize_t); v->init = new ExpInitializer(0, e); v->storage_class |= STCstatic | STCconst; v->semantic(sc); return v; } if (type) { /* $ gives the number of type entries in the type tuple */ VarDeclaration *v = new VarDeclaration(loc, Type::tsize_t, Id::dollar, NULL); Expression *e = new IntegerExp(0, type->arguments->dim, Type::tsize_t); v->init = new ExpInitializer(0, e); v->storage_class |= STCstatic | STCconst; v->semantic(sc); return v; } if (exp->op == TOKindex) { /* array[index] where index is some function of $ */ IndexExp *ie = (IndexExp *)exp; pvar = &ie->lengthVar; ce = ie->e1; } else if (exp->op == TOKslice) { /* array[lwr .. upr] where lwr or upr is some function of $ */ SliceExp *se = (SliceExp *)exp; pvar = &se->lengthVar; ce = se->e1; } else if (exp->op == TOKarray) { /* array[e0, e1, e2, e3] where e0, e1, e2 are some function of $ * $ is a opDollar!(dim)() where dim is the dimension(0,1,2,...) */ ArrayExp *ae = (ArrayExp *)exp; AggregateDeclaration *ad = NULL; Type *t = ae->e1->type->toBasetype(); if (t->ty == Tclass) { ad = ((TypeClass *)t)->sym; } else if (t->ty == Tstruct) { ad = ((TypeStruct *)t)->sym; } assert(ad); Dsymbol *dsym = search_function(ad, Id::opDollar); if (!dsym) // no dollar exists -- search in higher scope return NULL; VarDeclaration *v = ae->lengthVar; if (!v) { // $ is lazily initialized. Create it now. TemplateDeclaration *td = dsym->isTemplateDeclaration(); if (td) { // Instantiate opDollar!(dim) with the index as a template argument Objects *tdargs = new Objects(); tdargs->setDim(1); Expression *x = new IntegerExp(0, ae->currentDimension, Type::tsize_t); x = x->semantic(sc); tdargs->data[0] = x; //TemplateInstance *ti = new TemplateInstance(loc, td, tdargs); //ti->semantic(sc); DotTemplateInstanceExp *dte = new DotTemplateInstanceExp(loc, ae->e1, td->ident, tdargs); v = new VarDeclaration(loc, NULL, Id::dollar, new ExpInitializer(0, dte)); } else { /* opDollar exists, but it's a function, not a template. * This is acceptable ONLY for single-dimension indexing. * Note that it's impossible to have both template & function opDollar, * because both take no arguments. */ if (ae->arguments->dim != 1) { ae->error("%s only defines opDollar for one dimension", ad->toChars()); return NULL; } FuncDeclaration *fd = dsym->isFuncDeclaration(); assert(fd); Expression * x = new DotVarExp(loc, ae->e1, fd); v = new VarDeclaration(loc, NULL, Id::dollar, new ExpInitializer(0, x)); } v->semantic(sc); ae->lengthVar = v; } return v; } else /* Didn't find $, look in enclosing scope(s). */ return NULL; /* If we are indexing into an array that is really a type * tuple, rewrite this as an index into a type tuple and * try again. */ if (ce->op == TOKtype) { Type *t = ((TypeExp *)ce)->type; if (t->ty == Ttuple) { type = (TypeTuple *)t; goto L1; } } /* *pvar is lazily initialized, so if we refer to $ * multiple times, it gets set only once. */ if (!*pvar) // if not already initialized { /* Create variable v and set it to the value of $ */ VarDeclaration *v = new VarDeclaration(loc, Type::tsize_t, Id::dollar, NULL); if (ce->op == TOKtuple) { /* It is for an expression tuple, so the * length will be a const. */ Expression *e = new IntegerExp(0, ((TupleExp *)ce)->exps->dim, Type::tsize_t); v->init = new ExpInitializer(0, e); v->storage_class |= STCstatic | STCconst; } else { /* For arrays, $ will either be a compile-time constant * (in which case its value in set during constant-folding), * or a variable (in which case an expression is created in * toir.c). */ VoidInitializer *e = new VoidInitializer(0); e->type = Type::tsize_t; v->init = e; v->storage_class |= STCctfe; // it's never a true static variable } *pvar = v; } (*pvar)->semantic(sc); return (*pvar); } return NULL; }