/* ************************************************************************* */ Ordering Ordering::ColamdConstrainedFirst(const VariableIndex& variableIndex, const std::vector<Key>& constrainFirst, bool forceOrder) { gttic(Ordering_COLAMDConstrainedFirst); const int none = -1; size_t n = variableIndex.size(); std::vector<int> cmember(n, none); // Build a mapping to look up sorted Key indices by Key FastMap<Key, size_t> keyIndices; size_t j = 0; for (auto key_factors: variableIndex) keyIndices.insert(keyIndices.end(), make_pair(key_factors.first, j++)); // If at least some variables are not constrained to be last, constrain the // ones that should be constrained. int group = 0; for (Key key: constrainFirst) { cmember[keyIndices.at(key)] = group; if (forceOrder) ++group; } if (!forceOrder && !constrainFirst.empty()) ++group; for(int& c: cmember) if (c == none) c = group; return Ordering::ColamdConstrained(variableIndex, cmember); }
/* ************************************************************************* */ Ordering Ordering::ColamdConstrainedLast(const VariableIndex& variableIndex, const std::vector<Key>& constrainLast, bool forceOrder) { gttic(Ordering_COLAMDConstrainedLast); size_t n = variableIndex.size(); std::vector<int> cmember(n, 0); // Build a mapping to look up sorted Key indices by Key // TODO(frank): think of a way to not build this FastMap<Key, size_t> keyIndices; size_t j = 0; for (auto key_factors: variableIndex) keyIndices.insert(keyIndices.end(), make_pair(key_factors.first, j++)); // If at least some variables are not constrained to be last, constrain the // ones that should be constrained. int group = (constrainLast.size() != n ? 1 : 0); for (Key key: constrainLast) { cmember[keyIndices.at(key)] = group; if (forceOrder) ++group; } return Ordering::ColamdConstrained(variableIndex, cmember); }
/* ************************************************************************* */ Ordering Ordering::ColamdConstrained(const VariableIndex& variableIndex, const FastMap<Key, int>& groups) { gttic(Ordering_COLAMDConstrained); size_t n = variableIndex.size(); std::vector<int> cmember(n, 0); // Build a mapping to look up sorted Key indices by Key FastMap<Key, size_t> keyIndices; size_t j = 0; for (auto key_factors: variableIndex) keyIndices.insert(keyIndices.end(), make_pair(key_factors.first, j++)); // Assign groups typedef FastMap<Key, int>::value_type key_group; for(const key_group& p: groups) { // FIXME: check that no groups are skipped cmember[keyIndices.at(p.first)] = p.second; } return Ordering::ColamdConstrained(variableIndex, cmember); }
/* ************************************************************************* */ Ordering Ordering::ColamdConstrainedLast(const VariableIndex& variableIndex, const std::vector<Key>& constrainLast, bool forceOrder) { gttic(Ordering_COLAMDConstrainedLast); size_t n = variableIndex.size(); std::vector<int> cmember(n, 0); // Build a mapping to look up sorted Key indices by Key FastMap<Key, size_t> keyIndices; size_t j = 0; BOOST_FOREACH(const VariableIndex::value_type key_factors, variableIndex) keyIndices.insert(keyIndices.end(), make_pair(key_factors.first, j++)); // If at least some variables are not constrained to be last, constrain the // ones that should be constrained. int group = (constrainLast.size() != n ? 1 : 0); BOOST_FOREACH(Key key, constrainLast) { cmember[keyIndices.at(key)] = group; if (forceOrder) ++group; }
/* ************************************************************************* */ Ordering Ordering::COLAMDConstrained( const VariableIndex& variableIndex, std::vector<int>& cmember) { gttic(Ordering_COLAMDConstrained); gttic(Prepare); size_t nEntries = variableIndex.nEntries(), nFactors = variableIndex.nFactors(), nVars = variableIndex.size(); // Convert to compressed column major format colamd wants it in (== MATLAB format!) size_t Alen = ccolamd_recommended((int)nEntries, (int)nFactors, (int)nVars); /* colamd arg 3: size of the array A */ vector<int> A = vector<int>(Alen); /* colamd arg 4: row indices of A, of size Alen */ vector<int> p = vector<int>(nVars + 1); /* colamd arg 5: column pointers of A, of size n_col+1 */ // Fill in input data for COLAMD p[0] = 0; int count = 0; vector<Key> keys(nVars); // Array to store the keys in the order we add them so we can retrieve them in permuted order size_t index = 0; BOOST_FOREACH(const VariableIndex::value_type key_factors, variableIndex) { // Arrange factor indices into COLAMD format const VariableIndex::Factors& column = key_factors.second; size_t lastFactorId = numeric_limits<size_t>::max(); BOOST_FOREACH(size_t factorIndex, column) { if(lastFactorId != numeric_limits<size_t>::max()) assert(factorIndex > lastFactorId); A[count++] = (int)factorIndex; // copy sparse column } p[index+1] = count; // column j (base 1) goes from A[j-1] to A[j]-1 // Store key in array and increment index keys[index] = key_factors.first; ++ index; } assert((size_t)count == variableIndex.nEntries()); //double* knobs = NULL; /* colamd arg 6: parameters (uses defaults if NULL) */ double knobs[CCOLAMD_KNOBS]; ccolamd_set_defaults(knobs); knobs[CCOLAMD_DENSE_ROW]=-1; knobs[CCOLAMD_DENSE_COL]=-1; int stats[CCOLAMD_STATS]; /* colamd arg 7: colamd output statistics and error codes */ gttoc(Prepare); // call colamd, result will be in p /* returns (1) if successful, (0) otherwise*/ if(nVars > 0) { gttic(ccolamd); int rv = ccolamd((int)nFactors, (int)nVars, (int)Alen, &A[0], &p[0], knobs, stats, &cmember[0]); if(rv != 1) throw runtime_error((boost::format("ccolamd failed with return value %1%")%rv).str()); } // ccolamd_report(stats); gttic(Fill_Ordering); // Convert elimination ordering in p to an ordering Ordering result; result.resize(nVars); for(size_t j = 0; j < nVars; ++j) result[j] = keys[p[j]]; gttoc(Fill_Ordering); return result; }
/* ************************************************************************* */ Ordering Ordering::COLAMD(const VariableIndex& variableIndex) { // Call constrained version with all groups set to zero vector<int> dummy_groups(variableIndex.size(), 0); return Ordering::COLAMDConstrained(variableIndex, dummy_groups); }