Example #1
0
/**
 * Return distance at time of closest point of approach
 **/
double Vect2::dcpa(const Vect2& so, const Vect2& vo, const Vect2& si, const Vect2& vi) {
	double t = tcpa(so,vo,si,vi);
	Vect2 s = so.Sub(si);
	Vect2 v = vo.Sub(vi);
	Vect2 st = s.AddScal(t,v);
	return st.norm();
}
Example #2
0
Vect2 VectFuns::closestPoint(const Vect2& a, const Vect2& b, const Vect2& so) {
	// translate a to origin, then project so onto the line defined by ab, then translate back to a
	Vect2 ab = b.Sub(a);
	return ab.Scal(so.Sub(a).dot(ab)/ab.dot(ab)).Add(a);
//	if (collinear(a,b,so)) return so;
//	Vect2 v = a.Sub(b).PerpL().Hat(); // perpendicular vector to line
//	Vect2 s2 = so.AddScal(100, v);
//	Vect2 cp = intersection(so,s2,100,a,b).first;
//	return cp;
}
Example #3
0
/**
 * Return time to closest point approach
 * if time is negative or velocities are parallel returns 0
 */
double Vect2::tcpa (const Vect2& so, const Vect2& vo, const Vect2& si, const Vect2& vi){
	double t;
	Vect2 s = so.Sub(si);
	Vect2 v = vo.Sub(vi);
	double nv = v.sqv();
	if (nv > 0)
		t = std::max(0.0,-s.dot(v)/nv);
	else
		t = 0;
	return t;
}
Example #4
0
void TCAS2D::RA2D_interval(double DMOD, double Tau, double B, double T, Vect2 s, Vect2 vo, Vect2 vi) {
  t_in = B;
  t_out = T;
  Vect2 v = vo.Sub(vi);
  double sqs = s.sqv();
  double sdotv = s.dot(v);
  double sqD = Util::sq(DMOD);
  if (vo.almostEquals(vi) && sqs <= sqD)
    return;
  double sqv = v.sqv();
  if (sqs <= sqD) {
    t_out = Util::root2b(sqv,sdotv,sqs-sqD,1);
    return;
  }
  double b = 2*sdotv+Tau*sqv;
  double c = sqs+Tau*sdotv-sqD;
  if (sdotv >= 0 || Util::discr(sqv,b,c) < 0) {
    t_in = T+1;
    t_out = 0;
    return;
  }
  t_in = Util::root(sqv,b,c,-1);
  if (Horizontal::Delta(s,v,DMOD) >= 0)
    t_out = Horizontal::Theta_D(s,v,1,DMOD);
  else
    t_out = Util::root(sqv,b,c,1);
}
Example #5
0
Vect2 Vect2::intersect_pt(const Vect2& s0, const Vect2& v0, const Vect2& s1, const Vect2& v1) {
	if (Util::almost_equals(v0.det(v1),0.0)) {
		//fpln(" $$$$$$$$ ERROR $$$$$$$$$");
		return Vect2::INVALID();
	} else {
		Vect2 delta = s1.Sub(s0);
		double ss = delta.det(v1)/v0.det(v1);
		return s0.Add(v0.Scal(ss));
	}
}
Example #6
0
std::pair<Vect2,double> VectFuns::intersection(const Vect2& so, const Vect2& vo, const Vect2& si, const Vect2& vi) {
	Vect2 ds = si.Sub(so);
	if (vo.det(vi) == 0) {
		//f.pln(" $$$ intersection: lines are parallel");
		return std::pair<Vect2,double>(Vect2::ZERO(),  NaN);
	}
	double tt = ds.det(vi)/vo.det(vi);
	Vect2 intersec = so.Add(vo.Scal(tt));
	return std::pair<Vect2,double>(intersec,tt);
}
Example #7
0
/**
 * Computes 2D intersection point of two lines, but also finds z component (projected by time from line 1)
 * @param s0 starting point of line 1
 * @param v0 direction vector for line 1
 * @param s1 starting point of line 2
 * @param v1 direction vector of line 2
 * @return Pair (2-dimensional point of intersection with 3D projection, relative time of intersection, relative to the so3)
 * If the lines are parallel, this returns the pair (0,NaN).
 */
double  VectFuns::timeOfIntersection(const Vect3& so3, const Velocity& vo3, const Vect3& si3, const Velocity& vi3) {
	Vect2 so = so3.vect2();
	Vect2 vo = vo3.vect2();
	Vect2 si = si3.vect2();
	Vect2 vi = vi3.vect2();
	Vect2 ds = si.Sub(so);
	if (vo.det(vi) == 0) {
		//f.pln(" $$$ intersection: lines are parallel");
		return NaN;
	}
	double tt = ds.det(vi)/vo.det(vi);
	//f.pln(" $$$ intersection: tt = "+tt);
	return tt;
}
Example #8
0
Vect3 VectFuns::closestPoint(const Vect3& a, const Vect3& b, const Vect3& so) {
	if (a.almostEquals(b)) return Vect3::INVALID();
	Vect2 c = closestPoint(a.vect2(), b.vect2(), so.vect2());
	Vect3 v = b.Sub(a);
	double d1 = v.vect2().norm();
	double d2 = c.Sub(a.vect2()).norm();
	double d3 = c.Sub(b.vect2()).norm();
	double f = d2/d1;
	if (d3 > d1 && d3 > d2) { // negative direction
		f = -f;
	}
	return a.AddScal(f, v);


//	Vect3 v = a.Sub(b).PerpL().Hat2D(); // perpendicular vector to line
//	Vect3 s2 = so.AddScal(100, v);
//	std::pair<Vect3, double> i = intersectionAvgZ(a,b,100,so,s2);
//	// need to fix altitude to be along the a-b line
//	return interpolate(a,b,i.second/100.0);
}
Example #9
0
/**
 * Computes 2D intersection point of two lines, but also finds z component (projected by time from line 1)
 * @param s0 starting point of line 1
 * @param v0 direction vector for line 1
 * @param s1 starting point of line 2
 * @param v1 direction vector of line 2
 * @return Pair (2-dimensional point of intersection with 3D projection, relative time of intersection, relative to the so3)
 * If the lines are parallel, this returns the pair (0,NaN).
 */
std::pair<Vect3,double> VectFuns::intersection(const Vect3& so3, const Velocity& vo3, const Vect3& si3, const Velocity& vi3) {
	Vect2 so = so3.vect2();
	Vect2 vo = vo3.vect2();
	Vect2 si = si3.vect2();
	Vect2 vi = vi3.vect2();
	Vect2 ds = si.Sub(so);
	if (vo.det(vi) == 0) {
		//f.pln(" $$$ intersection: lines are parallel");
		return std::pair<Vect3,double>(Vect3::ZERO(),  NaN);
	}
	double tt = ds.det(vi)/vo.det(vi);
	//f.pln(" $$$ intersection: tt = "+tt);
	Vect3 intersec = so3.Add(vo3.Scal(tt));
	double nZ = intersec.z;
	double maxZ = Util::max(so3.z,si3.z);
	double minZ = Util::min(so3.z,si3.z);
	if (nZ > maxZ) nZ = maxZ;
	if (nZ < minZ) nZ = minZ;
	return std::pair<Vect3,double>(intersec.mkZ(nZ),tt);
}
Example #10
0
bool VectFuns::collinear(const Vect2& p0, const Vect2& p1, const Vect2& p2) {
	// area of triangle = 0? (same as det of sides = 0?)
	return  p1.Sub(p0).det(p2.Sub(p0)) == 0;
}
Example #11
0
/**
 * returns the perpendicular distance between line defined vy s,v and point q.
 * @param s
 * @param v
 * @param q
 */
double Vect2::distAlong(const Vect2& s, const Vect2& v, const Vect2& q) {
	double tp = q.Sub(s).dot(v)/v.sqv();
	//f.pln(" $$$ distAlong: tp = "+tp);
	return Util::sign(tp)*v.Scal(tp).norm();

}
Example #12
0
std::pair<Vect2,double> VectFuns::intersection(const Vect2& so1, const Vect2& so2, double dto, const Vect2& si1, const Vect2& si2) {
	Vect2 vo = so2.Sub(so1).Scal(1/dto);
	Vect2 vi = si2.Sub(si1).Scal(1/dto);      // its ok to use any time here,  all times are relative to so
	return intersection(so1,vo,si1,vi);
}
Example #13
0
bool VectFuns::rightOfLine(const Vect2& so, const Vect2& vo, const Vect2& si) {
	return si.Sub(so).dot(vo.PerpR()) >= 0;
}
Example #14
0
/**
 * returns the perpendicular distance between line defined vy s,v and point q.
 * @param s
 * @param v
 * @param q
 */
double Vect2::distPerp(const Vect2& s, const Vect2& v, const Vect2& q) {
	double tp = q.Sub(s).dot(v)/v.sqv();
	return s.Add(v.Scal(tp)).Sub(q).norm();

}
Example #15
0
/**
 * Returns true if x is "behind" so , that is, x is within the region behind the perpendicular line to vo through so.
 */
bool VectFuns::behind(const Vect2& x, const Vect2& so, const Vect2& vo) {
	return Util::turnDelta(vo.trk(), x.Sub(so).trk()) > M_PI/2.0;
}
Example #16
0
bool VectFuns::divergent(const Vect2& so, const Vect2& vo, const Vect2& si, const Vect2& vi) {
	  return so.Sub(si).dot(vo.Sub(vi)) > 0;
}
Example #17
0
bool VectFuns::divergentHorizGt(const Vect2& s, const Vect2& vo, const Vect2& vi, double minRelSpeed) {
	Vect2 v = vo.Sub(vi);
	bool rtn = s.dot(v) > 0 && v.norm() > minRelSpeed;
	return rtn;
}
Example #18
0
double VectFuns::angle_between(const Vect2& a, const Vect2& b, const Vect2& c) {
	Vect2 A = b.Sub(a);
	Vect2 B = b.Sub(c);
	return Util::acos_safe(A.dot(B)/(A.norm()*B.norm()));
}
Example #19
0
int VectFuns::rightOfLinePoints(const Vect2& a, const Vect2& b, const Vect2& p) {
	Vect2 AB = b.Sub(a);
	Vect2 AP = p.Sub(a);
	//The calculation below is the 2-D cross product.
	return Util::sign(AP.x*AB.y - AP.y*AB.x);
}