/** * True if u is steeper than v. Uses the square of slope to avoid sqrt. */ bool is_steeper(Vector_3 u, Vector_3 v) { Vector_2 u_2 = Vector_2(u.x(), u.y()); Vector_2 v_2 = Vector_2(v.x(), v.y()); return ((u.z() * u.z() / u_2.squared_length()) > (v.z() * v.z() / v_2.squared_length())); }
// Computes the intersection C+uV of the planes M*x+D=0 and N*x+E=0. // Returns -1 if there are no intersections (parallel), 0 for a line // intersection and 1 for co-planarity. // precondition: A, B are normalized (hessian form) int plane_plane_intersection(const Vector_3& M, const double D, const Vector_3& N, const double E, Point_3& C, Vector_3& V) { typedef CGAL::Cartesian<double> K; typedef CGAL::Plane_3<K> Plane_3; typedef CGAL::Line_3<K> Line_3; Plane_3 P1(M.x(), M.y(), M.z(), D); Plane_3 P2(N.x(), N.y(), N.z(), E); CGAL::Object result = CGAL::intersection(P1, P2); if (const Line_3 *iline = CGAL::object_cast<Line_3>(&result)) { CGAL::Point_3<K> p = iline->point(0); CGAL::Vector_3<K> v = iline->to_vector(); C = Point_3(p.x(), p.y(), p.z()); V = Vector_3(v.x(), v.y(), v.z()); return 0; } else if (const Plane_3 *iplane = CGAL::object_cast<Plane_3>(&result)) { return 1; } else { return -1; } }
int line_plane_intersection(const Point_3& B, const Vector_3& M, const Vector_3& N, const double D, Point_3& p) { typedef CGAL::Cartesian<double> K; typedef CGAL::Plane_3<K> Plane_3; typedef CGAL::Line_3<K> Line_3; CGAL::Point_3<K> CB(B.x(), B.y(), B.z()); CGAL::Vector_3<K> CM(M.x(), M.y(), M.z()); Line_3 L(CB, CM); Plane_3 P(N.x(), N.y(), N.z(), D); CGAL::Object result = CGAL::intersection(L, P); if (const CGAL::Point_3<K> *ipoint = CGAL::object_cast<CGAL::Point_3<K> >(&result)) { p = Point_3(ipoint->x(), ipoint->y(), ipoint->z()); return 0; } else if (const Line_3 *iline = CGAL::object_cast<Line_3>(&result)) { return 1; } else { return -1; } }
static std::vector<Point_3> mapPointsFromOXYplane(std::vector<Point_2> points, Vector_3 nu) { DEBUG_START; ASSERT(!!Vector3d(nu.x(), nu.y(), nu.z()) && "nu is null vector"); Vector_3 ez(0., 0, 1.); double length = sqrt(nu.squared_length()); ASSERT(std::fpclassify(length) != FP_ZERO); nu = nu * 1. / length; /* Normalize std::vector \nu. */ ASSERT(std::isfinite(nu.x())); ASSERT(std::isfinite(nu.y())); ASSERT(std::isfinite(nu.z())); Vector_3 tau = cross_product(nu, ez); std::vector<Point_3> pointsMapped; CGAL::Origin o; for (auto &point : points) { pointsMapped.push_back(o + tau * point.x() + ez * point.y()); } DEBUG_END; return pointsMapped; }
void Viewer::alphaChanged() { normals.resize(0); pos_poly.resize(0); std::list<Facet> facets; scene->alpha_shape.get_alpha_shape_facets(std::back_inserter(facets), Alpha_shape_3::REGULAR); for(std::list<Facet>::iterator fit = facets.begin(); fit != facets.end(); ++fit) { const Cell_handle& ch = fit->first; const int index = fit->second; //const Vector_3& n = ch->normal(index); // must be unit vector const Point_3& a = ch->vertex((index+1)&3)->point(); const Point_3& b = ch->vertex((index+2)&3)->point(); const Point_3& c = ch->vertex((index+3)&3)->point(); Vector_3 v = CGAL::unit_normal(a,b,c); normals.push_back(v.x()); normals.push_back(v.y()); normals.push_back(v.z()); normals.push_back(v.x()); normals.push_back(v.y()); normals.push_back(v.z()); normals.push_back(v.x()); normals.push_back(v.y()); normals.push_back(v.z()); pos_poly.push_back(a.x()); pos_poly.push_back(a.y()); pos_poly.push_back(a.z()); pos_poly.push_back(b.x()); pos_poly.push_back(b.y()); pos_poly.push_back(b.z()); pos_poly.push_back(c.x()); pos_poly.push_back(c.y()); pos_poly.push_back(c.z()); } initialize_buffers(); }
//compute the cross point Point_3 compute_cross_point(Plane_3 plane, Point_3 start, Point_3 end) { Vector_3 normal = plane.orthogonal_vector(); Vector_3 line_direction = end - start; Point_3 p= plane.point(); double t; double a = (start.x() - p.x()) * normal.x() + (start.y() - p.y()) * normal.y() + (start.z() - p.z()) * normal.z(); double b = line_direction.x() * normal.x() + line_direction.y() * normal.y() + line_direction.z() * normal.z(); assert(b != 0); t = -a / b; return start + t * line_direction; }
void rotate_points3d(const Eigen::MatrixXd& ptsin, const Point_3& center, const Vector_3& direction, double angle, Eigen::MatrixXd& ptsout) { Eigen::Vector3d c(center.x(), center.y(), center.z()); Eigen::Vector3d dir(direction.x(), direction.y(), direction.z()); Eigen::Matrix4d rotMat = create_rotation3d_line_angle(center, direction, angle); ptsout.resize(ptsin.rows(), ptsin.cols() ); ptsout = transform_point3d(ptsin, rotMat); }
// Génère le vecteur qui a subi une rotation d'angle teta Vector_3 DegradeAnObject::rotationVector(Vector_3 v, Vector_3 normal, double teta) { double c = cos(teta); double s = sin(teta); Kernel::RT m00 = normal.x() * normal.x() * (1-c) + c; Kernel::RT m01 = normal.x() * normal.y() * (1-c) - normal.z() * s; Kernel::RT m02 = normal.x() * normal.z() * (1-c) + normal.y() * s; Kernel::RT m10 = normal.x() * normal.y() * (1-c) + normal.z() * s; Kernel::RT m11 = normal.y() * normal.y() * (1-c) + c; Kernel::RT m12 = normal.z() * normal.y() * (1-c) - normal.x() * s; Kernel::RT m20 = normal.x() * normal.z() * (1-c) - normal.y() * s; Kernel::RT m21 = normal.z() * normal.y() * (1-c) + normal.x() * s; Kernel::RT m22 = normal.z() * normal.z() * (1-c) + c; CGAL::Aff_transformation_3<Kernel> rotate(m00, m01, m02, m10, m11, m12, m20, m21, m22); return rotate.transform(v); }
Polyhedron_3 obtainPolyhedron(Polyhedron_3 initialP, std::map<int, int> map, IpoptTopologicalCorrector *FTNLP) { DEBUG_START; std::vector<Vector_3> directions = FTNLP->getDirections(); std::vector<double> values = FTNLP->getValues(); std::vector<Plane_3> planes(initialP.size_of_facets()); unsigned iFacet = 0; for (auto I = initialP.facets_begin(), E = initialP.facets_end(); I != E; ++I) { auto it = map.find(iFacet); if (it != map.end()) { int i = it->second; Vector_3 u = directions[i]; double h = values[i]; ASSERT(h > 0); planes[iFacet] = Plane_3(-u.x(), -u.y(), -u.z(), h); std::cout << "Changing plane #" << iFacet << ": " << I->plane() << " |--> " << planes[iFacet] << std::endl; } else { planes[iFacet] = I->plane(); } ++iFacet; } Polyhedron_3 intersection(planes); std::cout << "Change in facets number: " << initialP.size_of_facets() << " -> " << intersection.size_of_facets() << std::endl; ASSERT(initialP.size_of_facets() - intersection.size_of_facets() < map.size() && "It seems that all extracted facets have gone"); DEBUG_END; return intersection; }
void Viewer::drawEdge(const Point_3& from, const Point_3& to, const QColor& clr, float r) { /* Draw regular lines */ if( m_isFlat ) { // disable lighting ::glDisable( GL_LIGHTING ); ::glLineWidth(1.0); qglColor( clr ); ::glBegin(GL_LINES); ::glVertex3f( from.x(), from.y(), from.z() ); ::glVertex3f( to.x(), to.y(), to.z() ); ::glEnd(); // resume lighting ::glEnable( GL_LIGHTING ); return; } /* Draw edges as 3D cylinders */ GLboolean lighting, colorMaterial; ::glGetBooleanv( GL_LIGHTING, &lighting ); ::glGetBooleanv( GL_COLOR_MATERIAL, &colorMaterial ); ::glEnable( GL_LIGHTING ); ::glDisable(GL_COLOR_MATERIAL); float color[4]; color[0] = clr.redF(); color[1] = clr.greenF(); color[2] = clr.blueF(); color[3] = clr.alphaF(); Vector_3 v = to - from; // compute the length of the edge // method 1: // float length = sqrt( CGAL::squared_distance( from, to ) ); // method 2: float length = sqrt( v.squared_length() ); // normalize v = v / length; // compute the angle: cos theta = v.z/1.0 GLfloat angle = acos( v.z() ) / 3.1415927 * 180; ::glPushMatrix(); // move to "from" point ::glTranslatef( from.x(), from.y(), from.z() ); // rotate from z-axis to from-->to // axis: cross product of z-axis and from-->to ::glRotatef( angle, -v.y(), v.x(), 0.0f ); // draw GLUquadricObj* quadratic = ::gluNewQuadric(); // Create A Pointer To The Quadric Object ::gluQuadricNormals( quadratic, GLU_SMOOTH ); // Create Smooth Normals ::glMaterialfv( GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, color ); // gluCylinder draws a cylinder oriented along the z-axis ::gluCylinder( quadratic, r, r, length, 16, 4 ); // move back to origin ::glPopMatrix(); if ( colorMaterial ) ::glEnable( GL_COLOR_MATERIAL ); if ( !lighting ) ::glDisable( GL_LIGHTING ); }
// Réalise un impact sur la face fs à partir d'une liste de points à déplacer, répartis par couronne (pts[0] = première couronne intérieure, pts[0][0] = premier point de la première couronne) void DegradeAnObject::impactTheFacetArea(std::vector< std::vector<Point_3> > pts, Facet fs, double ray, int index) { double str = 0.02; Vector_3 normal = normalizeVector(getNormalOfFacet(fs)); Kernel::Plane_3 pl(fs.halfedge()->vertex()->point(), normal); for(int i = 0 ; i < pts.size() ; i++) { for(int j = 0 ; j < pts[i].size() ; j++) { bool chk = false; Point_iterator pi = polys[index].points_begin(); while(!chk) { ++pi; if(*pi == pts[i][j]) { *pi = Point_3(pi->x() - (impactStrengh(str, i))*normal.x(), pi->y() - (impactStrengh(str, i))*normal.y(), pi->z() - (impactStrengh(str, i))*normal.z()); chk = true; } } } } }
// Normalise un vecteur Vector_3 DegradeAnObject::normalizeVector(Vector_3 v) { double norm = sqrt(to_double(v.x() * v.x() + v.y() * v.y() + v.z() * v.z())); return v/norm; }
Point_3 vec_to_point(const Vector_3& v) { return Point_3(v.x(),v.y(),v.z()); }
std::array<double,3> convert_to_array(const Vector_3& p) { return std::array<double,3>({p.x(),p.y(),p.z()}); }