inline void form_Q( const VerdictVector& v1, const VerdictVector& v2, const VerdictVector& v3, VerdictVector& q1, VerdictVector& q2, VerdictVector& q3 ) { double g11, g12, g13, g22, g23, g33; g11 = v1 % v1; g12 = v1 % v2; g13 = v1 % v3; g22 = v2 % v2; g23 = v2 % v3; g33 = v3 % v3; double rtg11 = sqrt(g11); double rtg22 = sqrt(g22); double rtg33 = sqrt(g33); VerdictVector temp1; temp1 = v1 * v2; double cross = sqrt( temp1 % temp1 ); double q11,q21,q31; double q12,q22,q32; double q13,q23,q33; q11=1; q21=0; q31=0; q12 = g12 / rtg11 / rtg22; q22 = cross / rtg11 / rtg22; q32 = 0; q13 = g13 / rtg11 / rtg33; q23 = ( g11*g23-g12*g13 )/ rtg11 / rtg33 / cross; temp1 = v2 * v3; q33 = ( v1 % temp1 ) / rtg33 / cross; q1.set( q11, q21, q31 ); q2.set( q12, q22, q32 ); q3.set( q13, q23, q33 ); }
/*! get the weights based on the average size of a tet */ int get_weight ( VerdictVector &w1, VerdictVector &w2, VerdictVector &w3 ) { static const double rt3 = sqrt(3.0); static const double root_of_2 = sqrt(2.0); w1.set(1,0,0); w2.set(0.5, 0.5*rt3, 0 ); w3.set(0.5, rt3/6.0, root_of_2/rt3); double scale = pow( 6.*verdict_tet_size/determinant(w1,w2,w3),0.3333333333333); w1 *= scale; w2 *= scale; w3 *= scale; return 1; }
inline void product( VerdictVector& a1, VerdictVector& a2, VerdictVector& a3, VerdictVector& b1, VerdictVector& b2, VerdictVector& b3, VerdictVector& c1, VerdictVector& c2, VerdictVector& c3 ) { VerdictVector x1, x2, x3; x1.set( a1.x(), a2.x(), a3.x() ); x2.set( a1.y(), a2.y(), a3.y() ); x3.set( a1.z(), a2.z(), a3.z() ); c1.set( x1 % b1, x2 % b1, x3 % b1 ); c2.set( x1 % b2, x2 % b2, x3 % b2 ); c3.set( x1 % b3, x2 % b3, x3 % b3 ); }
void VerdictVector::orthogonal_vectors( VerdictVector &vector2, VerdictVector &vector3 ) { double xv[3]; unsigned short i=0; unsigned short imin=0; double rmin = 1.0E20; unsigned short iperm1[3]; unsigned short iperm2[3]; unsigned short cont_flag = 1; double vec1[3], vec2[3]; double rmag; // Copy the input vector and normalize it VerdictVector vector1 = *this; vector1.normalize(); // Initialize perm flags iperm1[0] = 1; iperm1[1] = 2; iperm1[2] = 0; iperm2[0] = 2; iperm2[1] = 0; iperm2[2] = 1; // Get into the array format we can work with vector1.get_xyz( vec1 ); while (i<3 && cont_flag ) { if (fabs(vec1[i]) < 1e-6) { vec2[i] = 1.0; vec2[iperm1[i]] = 0.0; vec2[iperm2[i]] = 0.0; cont_flag = 0; } if (fabs(vec1[i]) < rmin) { imin = i; rmin = fabs(vec1[i]); } ++i; } if (cont_flag) { xv[imin] = 1.0; xv[iperm1[imin]] = 0.0; xv[iperm2[imin]] = 0.0; // Determine cross product vec2[0] = vec1[1] * xv[2] - vec1[2] * xv[1]; vec2[1] = vec1[2] * xv[0] - vec1[0] * xv[2]; vec2[2] = vec1[0] * xv[1] - vec1[1] * xv[0]; // Unitize rmag = sqrt(vec2[0]*vec2[0] + vec2[1]*vec2[1] + vec2[2]*vec2[2]); vec2[0] /= rmag; vec2[1] /= rmag; vec2[2] /= rmag; } // Copy 1st orthogonal vector into VerdictVector vector2 vector2.set( vec2 ); // Cross vectors to determine last orthogonal vector vector3 = vector1 * vector2; }
/*! multiple quality measures of a quad */ C_FUNC_DEF void v_quad_quality( int num_nodes, VERDICT_REAL coordinates[][3], unsigned int metrics_request_flag, QuadMetricVals *metric_vals ) { memset( metric_vals, 0, sizeof(QuadMetricVals) ); // for starts, lets set up some basic and common information /* node numbers and side numbers used below 2 3 +--------- 2 / + / | 3 / | 1 / | + | 0 -------------+ 1 0 */ // vectors for each side VerdictVector edges[4]; make_quad_edges( edges, coordinates ); double areas[4]; signed_corner_areas( areas, coordinates ); double lengths[4]; lengths[0] = edges[0].length(); lengths[1] = edges[1].length(); lengths[2] = edges[2].length(); lengths[3] = edges[3].length(); VerdictBoolean is_collapsed = is_collapsed_quad(coordinates); // handle collapsed quads metrics here if(is_collapsed == VERDICT_TRUE && metrics_request_flag & ( V_QUAD_MINIMUM_ANGLE | V_QUAD_MAXIMUM_ANGLE | V_QUAD_JACOBIAN | V_QUAD_SCALED_JACOBIAN )) { if(metrics_request_flag & V_QUAD_MINIMUM_ANGLE) metric_vals->minimum_angle = v_tri_minimum_angle(3, coordinates); if(metrics_request_flag & V_QUAD_MAXIMUM_ANGLE) metric_vals->maximum_angle = v_tri_maximum_angle(3, coordinates); if(metrics_request_flag & V_QUAD_JACOBIAN) metric_vals->jacobian = (VERDICT_REAL)(v_tri_area(3, coordinates) * 2.0); if(metrics_request_flag & V_QUAD_SCALED_JACOBIAN) metric_vals->jacobian = (VERDICT_REAL)(v_tri_scaled_jacobian(3, coordinates) * 2.0); } // calculate both largest and smallest angles if(metrics_request_flag & (V_QUAD_MINIMUM_ANGLE | V_QUAD_MAXIMUM_ANGLE) && is_collapsed == VERDICT_FALSE ) { // gather the angles double angles[4]; angles[0] = acos( -(edges[0] % edges[1])/(lengths[0]*lengths[1]) ); angles[1] = acos( -(edges[1] % edges[2])/(lengths[1]*lengths[2]) ); angles[2] = acos( -(edges[2] % edges[3])/(lengths[2]*lengths[3]) ); angles[3] = acos( -(edges[3] % edges[0])/(lengths[3]*lengths[0]) ); if( lengths[0] <= VERDICT_DBL_MIN || lengths[1] <= VERDICT_DBL_MIN || lengths[2] <= VERDICT_DBL_MIN || lengths[3] <= VERDICT_DBL_MIN ) { metric_vals->minimum_angle = 360.0; metric_vals->maximum_angle = 0.0; } else { // if smallest angle, find the smallest angle if(metrics_request_flag & V_QUAD_MINIMUM_ANGLE) { metric_vals->minimum_angle = VERDICT_DBL_MAX; for(int i = 0; i<4; i++) metric_vals->minimum_angle = VERDICT_MIN(angles[i], metric_vals->minimum_angle); metric_vals->minimum_angle *= 180.0 / VERDICT_PI; } // if largest angle, find the largest angle if(metrics_request_flag & V_QUAD_MAXIMUM_ANGLE) { metric_vals->maximum_angle = 0.0; for(int i = 0; i<4; i++) metric_vals->maximum_angle = VERDICT_MAX(angles[i], metric_vals->maximum_angle); metric_vals->maximum_angle *= 180.0 / VERDICT_PI; if( areas[0] < 0 || areas[1] < 0 || areas[2] < 0 || areas[3] < 0 ) metric_vals->maximum_angle = 360 - metric_vals->maximum_angle; } } } // handle aspect, skew, taper, and area together if( metrics_request_flag & ( V_QUAD_ASPECT | V_QUAD_SKEW | V_QUAD_TAPER ) ) { //get principle axes VerdictVector principal_axes[2]; principal_axes[0] = edges[0] - edges[2]; principal_axes[1] = edges[1] - edges[3]; if(metrics_request_flag & (V_QUAD_ASPECT | V_QUAD_SKEW | V_QUAD_TAPER)) { double len1 = principal_axes[0].length(); double len2 = principal_axes[1].length(); // calculate the aspect ratio if(metrics_request_flag & V_QUAD_ASPECT) { if( len1 < VERDICT_DBL_MIN || len2 < VERDICT_DBL_MIN ) metric_vals->aspect = VERDICT_DBL_MAX; else metric_vals->aspect = VERDICT_MAX( len1 / len2, len2 / len1 ); } // calculate the taper if(metrics_request_flag & V_QUAD_TAPER) { double min_length = VERDICT_MIN( len1, len2 ); VerdictVector cross_derivative = edges[1] + edges[3]; if( min_length < VERDICT_DBL_MIN ) metric_vals->taper = VERDICT_DBL_MAX; else metric_vals->taper = cross_derivative.length()/ min_length; } // calculate the skew if(metrics_request_flag & V_QUAD_SKEW) { if( principal_axes[0].normalize() < VERDICT_DBL_MIN || principal_axes[1].normalize() < VERDICT_DBL_MIN ) metric_vals->skew = 0.0; else metric_vals->skew = fabs( principal_axes[0] % principal_axes[1] ); } } } // calculate the area if(metrics_request_flag & (V_QUAD_AREA | V_QUAD_RELATIVE_SIZE_SQUARED) ) { metric_vals->area = 0.25 * (areas[0] + areas[1] + areas[2] + areas[3]); } // calculate the relative size if(metrics_request_flag & (V_QUAD_RELATIVE_SIZE_SQUARED | V_QUAD_SHAPE_AND_SIZE | V_QUAD_SHEAR_AND_SIZE ) ) { double quad_area = v_quad_area (4, coordinates); v_set_quad_size( quad_area ); double w11,w21,w12,w22; get_weight(w11,w21,w12,w22); double avg_area = determinant(w11,w21,w12,w22); if( avg_area < VERDICT_DBL_MIN ) metric_vals->relative_size_squared = 0.0; else metric_vals->relative_size_squared = pow( VERDICT_MIN( metric_vals->area/avg_area, avg_area/metric_vals->area ), 2 ); } // calculate the jacobian if(metrics_request_flag & V_QUAD_JACOBIAN) { metric_vals->jacobian = VERDICT_MIN( VERDICT_MIN( areas[0], areas[1] ), VERDICT_MIN( areas[2], areas[3] ) ); } if( metrics_request_flag & ( V_QUAD_SCALED_JACOBIAN | V_QUAD_SHEAR | V_QUAD_SHEAR_AND_SIZE ) ) { double scaled_jac, min_scaled_jac = VERDICT_DBL_MAX; if( lengths[0] < VERDICT_DBL_MIN || lengths[1] < VERDICT_DBL_MIN || lengths[2] < VERDICT_DBL_MIN || lengths[3] < VERDICT_DBL_MIN ) { metric_vals->scaled_jacobian = 0.0; metric_vals->shear = 0.0; } else { scaled_jac = areas[0] / (lengths[0] * lengths[3]); min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac ); scaled_jac = areas[1] / (lengths[1] * lengths[0]); min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac ); scaled_jac = areas[2] / (lengths[2] * lengths[1]); min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac ); scaled_jac = areas[3] / (lengths[3] * lengths[2]); min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac ); metric_vals->scaled_jacobian = min_scaled_jac; //what the heck...set shear as well if( min_scaled_jac <= VERDICT_DBL_MIN ) metric_vals->shear = 0.0; else metric_vals->shear = min_scaled_jac; } } if( metrics_request_flag & (V_QUAD_WARPAGE | V_QUAD_ODDY) ) { VerdictVector corner_normals[4]; corner_normals[0] = edges[3] * edges[0]; corner_normals[1] = edges[0] * edges[1]; corner_normals[2] = edges[1] * edges[2]; corner_normals[3] = edges[2] * edges[3]; if( metrics_request_flag & V_QUAD_ODDY ) { double oddy, max_oddy = 0.0; double diff, dot_prod; double length_squared[4]; length_squared[0] = corner_normals[0].length_squared(); length_squared[1] = corner_normals[1].length_squared(); length_squared[2] = corner_normals[2].length_squared(); length_squared[3] = corner_normals[3].length_squared(); if( length_squared[0] < VERDICT_DBL_MIN || length_squared[1] < VERDICT_DBL_MIN || length_squared[2] < VERDICT_DBL_MIN || length_squared[3] < VERDICT_DBL_MIN ) metric_vals->oddy = VERDICT_DBL_MAX; else { diff = (lengths[0]*lengths[0]) - (lengths[1]*lengths[1]); dot_prod = edges[0]%edges[1]; oddy = ((diff*diff) + 4*dot_prod*dot_prod ) / (2*length_squared[1]); max_oddy = VERDICT_MAX( oddy, max_oddy ); diff = (lengths[1]*lengths[1]) - (lengths[2]*lengths[2]); dot_prod = edges[1]%edges[2]; oddy = ((diff*diff) + 4*dot_prod*dot_prod ) / (2*length_squared[2]); max_oddy = VERDICT_MAX( oddy, max_oddy ); diff = (lengths[2]*lengths[2]) - (lengths[3]*lengths[3]); dot_prod = edges[2]%edges[3]; oddy = ((diff*diff) + 4*dot_prod*dot_prod ) / (2*length_squared[3]); max_oddy = VERDICT_MAX( oddy, max_oddy ); diff = (lengths[3]*lengths[3]) - (lengths[0]*lengths[0]); dot_prod = edges[3]%edges[0]; oddy = ((diff*diff) + 4*dot_prod*dot_prod ) / (2*length_squared[0]); max_oddy = VERDICT_MAX( oddy, max_oddy ); metric_vals->oddy = max_oddy; } } if( metrics_request_flag & V_QUAD_WARPAGE ) { if( corner_normals[0].normalize() < VERDICT_DBL_MIN || corner_normals[1].normalize() < VERDICT_DBL_MIN || corner_normals[2].normalize() < VERDICT_DBL_MIN || corner_normals[3].normalize() < VERDICT_DBL_MIN ) metric_vals->warpage = VERDICT_DBL_MAX; else { metric_vals->warpage = pow( VERDICT_MIN( corner_normals[0]%corner_normals[2], corner_normals[1]%corner_normals[3]), 3 ); } } } if( metrics_request_flag & V_QUAD_STRETCH ) { VerdictVector temp; temp.set( coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1], coordinates[2][2] - coordinates[0][2]); double diag02 = temp.length_squared(); temp.set( coordinates[3][0] - coordinates[1][0], coordinates[3][1] - coordinates[1][1], coordinates[3][2] - coordinates[1][2]); double diag13 = temp.length_squared(); static const double QUAD_STRETCH_FACTOR = sqrt(2.0); // 'diag02' is now the max diagonal of the quad diag02 = VERDICT_MAX( diag02, diag13 ); if( diag02 < VERDICT_DBL_MIN ) metric_vals->stretch = VERDICT_DBL_MAX; else metric_vals->stretch = QUAD_STRETCH_FACTOR * VERDICT_MIN( VERDICT_MIN( lengths[0], lengths[1] ), VERDICT_MIN( lengths[2], lengths[3] ) ) / sqrt(diag02); } if(metrics_request_flag & (V_QUAD_CONDITION | V_QUAD_SHAPE | V_QUAD_SHAPE_AND_SIZE ) ) { double lengths_squared[4]; lengths_squared[0] = edges[0].length_squared(); lengths_squared[1] = edges[1].length_squared(); lengths_squared[2] = edges[2].length_squared(); lengths_squared[3] = edges[3].length_squared(); if( areas[0] < VERDICT_DBL_MIN || areas[1] < VERDICT_DBL_MIN || areas[2] < VERDICT_DBL_MIN || areas[3] < VERDICT_DBL_MIN ) { metric_vals->condition = VERDICT_DBL_MAX; metric_vals->shape= VERDICT_DBL_MAX; } else { double max_condition = 0.0, condition; condition = (lengths_squared[0] + lengths_squared[3])/areas[0]; max_condition = VERDICT_MAX( max_condition, condition ); condition = (lengths_squared[1] + lengths_squared[0])/areas[1]; max_condition = VERDICT_MAX( max_condition, condition ); condition = (lengths_squared[2] + lengths_squared[1])/areas[2]; max_condition = VERDICT_MAX( max_condition, condition ); condition = (lengths_squared[3] + lengths_squared[2])/areas[3]; max_condition = VERDICT_MAX( max_condition, condition ); metric_vals->condition = 0.5*max_condition; metric_vals->shape = 2/max_condition; } } if(metrics_request_flag & V_QUAD_AREA ) { if( metric_vals->area > 0 ) metric_vals->area = (VERDICT_REAL) VERDICT_MIN( metric_vals->area, VERDICT_DBL_MAX ); metric_vals->area = (VERDICT_REAL) VERDICT_MAX( metric_vals->area, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_ASPECT ) { if( metric_vals->aspect > 0 ) metric_vals->aspect = (VERDICT_REAL) VERDICT_MIN( metric_vals->aspect, VERDICT_DBL_MAX ); metric_vals->aspect = (VERDICT_REAL) VERDICT_MAX( metric_vals->aspect, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_CONDITION ) { if( metric_vals->condition > 0 ) metric_vals->condition = (VERDICT_REAL) VERDICT_MIN( metric_vals->condition, VERDICT_DBL_MAX ); metric_vals->condition = (VERDICT_REAL) VERDICT_MAX( metric_vals->condition, -VERDICT_DBL_MAX ); } // calculate distortion if(metrics_request_flag & V_QUAD_DISTORTION) { metric_vals->distortion = v_quad_distortion(num_nodes, coordinates); if( metric_vals->distortion > 0 ) metric_vals->distortion = (VERDICT_REAL) VERDICT_MIN( metric_vals->distortion, VERDICT_DBL_MAX ); metric_vals->distortion = (VERDICT_REAL) VERDICT_MAX( metric_vals->distortion, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_JACOBIAN ) { if( metric_vals->jacobian > 0 ) metric_vals->jacobian = (VERDICT_REAL) VERDICT_MIN( metric_vals->jacobian, VERDICT_DBL_MAX ); metric_vals->jacobian = (VERDICT_REAL) VERDICT_MAX( metric_vals->jacobian, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_MAXIMUM_ANGLE ) { if( metric_vals->maximum_angle > 0 ) metric_vals->maximum_angle = (VERDICT_REAL) VERDICT_MIN( metric_vals->maximum_angle, VERDICT_DBL_MAX ); metric_vals->maximum_angle = (VERDICT_REAL) VERDICT_MAX( metric_vals->maximum_angle, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_MINIMUM_ANGLE ) { if( metric_vals->minimum_angle > 0 ) metric_vals->minimum_angle = (VERDICT_REAL) VERDICT_MIN( metric_vals->minimum_angle, VERDICT_DBL_MAX ); metric_vals->minimum_angle = (VERDICT_REAL) VERDICT_MAX( metric_vals->minimum_angle, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_ODDY ) { if( metric_vals->oddy > 0 ) metric_vals->oddy = (VERDICT_REAL) VERDICT_MIN( metric_vals->oddy, VERDICT_DBL_MAX ); metric_vals->oddy = (VERDICT_REAL) VERDICT_MAX( metric_vals->oddy, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_RELATIVE_SIZE_SQUARED ) { if( metric_vals->relative_size_squared> 0 ) metric_vals->relative_size_squared = (VERDICT_REAL) VERDICT_MIN( metric_vals->relative_size_squared, VERDICT_DBL_MAX ); metric_vals->relative_size_squared = (VERDICT_REAL) VERDICT_MAX( metric_vals->relative_size_squared, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_SCALED_JACOBIAN ) { if( metric_vals->scaled_jacobian> 0 ) metric_vals->scaled_jacobian = (VERDICT_REAL) VERDICT_MIN( metric_vals->scaled_jacobian, VERDICT_DBL_MAX ); metric_vals->scaled_jacobian = (VERDICT_REAL) VERDICT_MAX( metric_vals->scaled_jacobian, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_SHEAR ) { if( metric_vals->shear > 0 ) metric_vals->shear = (VERDICT_REAL) VERDICT_MIN( metric_vals->shear, VERDICT_DBL_MAX ); metric_vals->shear = (VERDICT_REAL) VERDICT_MAX( metric_vals->shear, -VERDICT_DBL_MAX ); } // calculate shear and size // reuse values from above if(metrics_request_flag & V_QUAD_SHEAR_AND_SIZE) { metric_vals->shear_and_size = metric_vals->shear * metric_vals->relative_size_squared; if( metric_vals->shear_and_size > 0 ) metric_vals->shear_and_size = (VERDICT_REAL) VERDICT_MIN( metric_vals->shear_and_size, VERDICT_DBL_MAX ); metric_vals->shear_and_size = (VERDICT_REAL) VERDICT_MAX( metric_vals->shear_and_size, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_SHAPE ) { if( metric_vals->shape > 0 ) metric_vals->shape = (VERDICT_REAL) VERDICT_MIN( metric_vals->shape, VERDICT_DBL_MAX ); metric_vals->shape = (VERDICT_REAL) VERDICT_MAX( metric_vals->shape, -VERDICT_DBL_MAX ); } // calculate shape and size // reuse values from above if(metrics_request_flag & V_QUAD_SHAPE_AND_SIZE) { metric_vals->shape_and_size = metric_vals->shape * metric_vals->relative_size_squared; if( metric_vals->shape_and_size > 0 ) metric_vals->shape_and_size = (VERDICT_REAL) VERDICT_MIN( metric_vals->shape_and_size, VERDICT_DBL_MAX ); metric_vals->shape_and_size = (VERDICT_REAL) VERDICT_MAX( metric_vals->shape_and_size, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_SKEW ) { if( metric_vals->skew > 0 ) metric_vals->skew = (VERDICT_REAL) VERDICT_MIN( metric_vals->skew, VERDICT_DBL_MAX ); metric_vals->skew = (VERDICT_REAL) VERDICT_MAX( metric_vals->skew, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_STRETCH ) { if( metric_vals->stretch > 0 ) metric_vals->stretch = (VERDICT_REAL) VERDICT_MIN( metric_vals->stretch, VERDICT_DBL_MAX ); metric_vals->stretch = (VERDICT_REAL) VERDICT_MAX( metric_vals->stretch, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_TAPER ) { if( metric_vals->taper > 0 ) metric_vals->taper = (VERDICT_REAL) VERDICT_MIN( metric_vals->taper, VERDICT_DBL_MAX ); metric_vals->taper = (VERDICT_REAL) VERDICT_MAX( metric_vals->taper, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_WARPAGE ) { if( metric_vals->warpage > 0 ) metric_vals->warpage = (VERDICT_REAL) VERDICT_MIN( metric_vals->warpage, VERDICT_DBL_MAX ); metric_vals->warpage = (VERDICT_REAL) VERDICT_MAX( metric_vals->warpage, -VERDICT_DBL_MAX ); } }