//-------------------------------------------------------------------------
// Get a tab with indexes of speakers with maximum likelihood (mdtm and etf only)
void getTarClientIdx(Config & config, XList & inputList, unsigned long nbLoc, unsigned long * tarTab)
{
	XLine *linep;
	unsigned long cpt=0;
	unsigned long cpttab=0;
	double minLLK=config.getParam("minLLK").toDouble();
	double maxScore=minLLK;
	unsigned long idxTar=0;
    bool verbose=config.existsParam("verbose");
    
	while((linep=inputList.getLine())!=NULL)
	{
		double score=linep->getElement(6).toDouble();
		if (score>=maxScore)
		{
			maxScore=score;		// this is the maximum score
			idxTar=cpt;			// index is just the line
			if (verbose) {cout << "giving highest score to " << linep->getElement(1) << " "<<maxScore << endl;} 
		}                         
		if (cpt%nbLoc==(nbLoc-1))	// when changing segment
		{
			tarTab[cpttab]=idxTar;   // idx of the target goes in the tab
			if (verbose) {cout << linep->getElement(1) << " max score: "<<maxScore <<"idx: "<<idxTar<<"cpt: "<<cpt<< endl;}
			cpttab++;	
			maxScore=minLLK; 	//reset maxScore
		}
		cpt++;
	}
}
//-------------------------------------------------------------------------
// Load the NGRAM table, selecting the nbSelected first
void NGram::load(const String filename,Config &config){
  XList input(filename,config);
  XLine *linep;                                                          // Pointor on the current test line
  input.getLine(0);
 
  unsigned long idx=0;
  while (((linep=input.getLine()) != NULL)&&(idx<getSize())){
    for (unsigned long i=0;i<getOrder();i++){
      short int a=linep->getElement(i).toLong();
      setSymbol(idx,i,a);
    }
     if (linep->getElementCount()==(getOrder()+1)){
	unsigned long count=linep->getElement(getOrder()).toLong();
	setCount(idx,count);_totalCount+=count;}
     else setCount(idx,0);
    idx++;
  }
  if (idx!=getSize()){
    cout << "WARNING ! Number of ngram in the file["<<idx<<"] < to the number requested ["<<getSize()<<"]"<<endl;
    setSize(idx);
  }
  if (verboseLevel>1){
    cout <<"load symbol table from ["<<filename <<"]"<<endl;
    showTable();
  }
}
// Information on the quantity of data available for each client
// Outputs a list with the selected files for a defined quantity of data
int ExtractTargetDataInfo(Config& config)
{
	String inputClientListFileName = config.getParam("targetIdList");
	bool fixedLabelSelectedFrame;
	String labelSelectedFrames;
	if (config.existsParam("useIdForSelectedFrame"))      // the ID of each speaker is used as labelSelectedFrame
		fixedLabelSelectedFrame=false;
	else{                                                // the label is decided by the command line and is unique for the run
		labelSelectedFrames=config.getParam("labelSelectedFrames");
		if (verbose) cout << "Computing on" << labelSelectedFrames << " label" << endl;
		fixedLabelSelectedFrame=true;
	}
	unsigned long maxFrame=config.getParam("maxFrame").toLong();
	String outputFilename=config.getParam("outputFilename");
	
	
	ofstream outputFile(outputFilename.c_str(),ios::out| ios::trunc);
	try{
		XList inputClientList(inputClientListFileName,config);          // read the Id + filenames for each client
		XLine * linep;
		if (verbose) cout << "InfoTarget" << endl;
		// *********** Target loop *****************
		while ((linep=inputClientList.getLine()) != NULL){             // linep gives the XLine with the Id of a given client and the list of files
			String *id=linep->getElement();                              // Get the Client ID (id)
			outputFile<<*id;
			String currentFile="";
			XLine featureFileListp=linep->getElements();	           // Get the list of feature file for the client (end of the line)
			if (verbose) cout << "Info model ["<<*id<<"]"<<endl;
			if (!fixedLabelSelectedFrame){                                // the ID is used as label for selecting the frame
				labelSelectedFrames=*id;
				if (debug) cout <<*id<<" is used for label selected frames"<<endl;
			}
			// label files reading - It creates, for each file and each label, a cluster of segments - will be integrated witth the featre s - asap
			SegServer segmentsServer;                                    // Reading the segmentation files for each feature input file
			LabelServer labelServer;
			initializeClusters(featureFileListp,segmentsServer,labelServer,config);           // Reading the segmentation files for each feature input file
			unsigned long codeSelectedFrame=labelServer.getLabelIndexByString(labelSelectedFrames);            // Get the index of the cluster with in interest audio segments
			SegCluster& selectedSegments=segmentsServer.getCluster(codeSelectedFrame); // Gives the cluster of the selected/used segments
			Seg *seg;                                                                  // Will give the current segment
			unsigned long frameCount=0;
			selectedSegments.rewind();                                                 // at the begin of the selected segments list
			while(((seg=selectedSegments.getSeg())!=NULL) && (frameCount<maxFrame)){   // For each of the selected segments until the amount of data is get
				frameCount+=seg->length();
				cout << seg->sourceName()<<" "<<seg->begin()<<" "<<seg->length()<<" Total time="<<frameCount<<endl;
				if (seg->sourceName()!=currentFile){
					outputFile<<" "<<seg->sourceName();
					currentFile=seg->sourceName();
				}
			}                                                                          // end of the initial Train Iteration loop
			outputFile<<endl;
			if (verbose) cout << "Save info client ["<<*id<<"]" << endl;
		}                                                                            // end of the the target loop
	} // fin try
	
	catch (Exception& e)
	{
		cout << e.toString().c_str() << endl;
	}
	return 0;
}
Example #4
0
void FactorAnalysisStat::getXEstimate(){
	if (verbose) cout << "(FactorAnalysisStat) Compute X Estimate "<<endl;
	RealVector <double> AUX;
	AUX.setSize(_rang);
	XLine *pline;
	String *pFile;

	_matX.setAllValues(0.0);

	double *X=_matX.getArray();	
	double *U=_matU.getArray();
	double *S_X_h=_matS_X_h.getArray();
	double *aux=AUX.getArray();
	double *super_invvar=_super_invvar.getArray();
	
	fileList.rewind();
	while((pline=fileList.getLine())!=NULL) {
		while((pFile=pline->getElement())!=NULL) {
		    unsigned long sent=_ndxTable.sessionNb(*pFile);
			AUX.setAllValues(0.0);
			for(unsigned long i=0;i<_rang;i++)
				for(unsigned long k=0;k<_supervsize;k++) 
					aux[i]+= U[k*_rang+i]*super_invvar[k]*S_X_h[sent*_supervsize+k];	
			double *l_h_inv=_l_h_inv[sent].getArray();	
			for(unsigned long i=0;i<_rang;i++)
				for(unsigned long k=0;k<_rang;k++) 
					X[sent*_rang+i]+=l_h_inv[i*_rang+k]*aux[k];
			sent++;
		}
	}
};
Example #5
0
void FactorAnalysisStat::substractChannelStats(){
	if (verbose) cout <<"(FactorAnalysisStat) Compute and Substract Channel FA Stats... "<<endl;	
	RealVector <double> UX;UX.setSize(_supervsize); UX.setAllValues(0.0);double* ux=UX.getArray();		
		
	// Compute Occupations and Statistics
	unsigned long loc=0;
	unsigned long sent=0; 
	XLine *pline; String *pFile; 
	fileList.rewind();
	
	double *super_mean=_super_mean.getArray();
	double *N_h=_matN_h.getArray(); 
	double *S_X=_matS_X.getArray();

	while((pline=fileList.getLine())!=NULL) { 		
		while((pFile=pline->getElement())!=NULL) {
			this->getUX(UX,*pFile);
			for(unsigned long k=0;k<_supervsize;k++) 
				ux[k]+=super_mean[k];
			
			for(unsigned long k=0;k<_mixsize;k++)
				for (unsigned long i=0;i<_vsize;i++)
					S_X[loc*_supervsize+(k*_vsize+i)]-= N_h[sent*_mixsize+k]*ux[i+k*_vsize];
			sent++;
		}
		loc++;
	}
};
//-------------------------------------------------------------------------
// Produce a tab with mean and cov by segment without the maximum score(mdtm and etf only)
void getSegmentalMeanCovWithoutMax(Config & config, XList & inputList, unsigned long nbLoc, unsigned long * tarTab, double* meanTab, double * covTab)
{
	XLine *linep;
	unsigned long cpt=0;
	unsigned long cpttab=0;
	double minLLK=config.getParam("minLLK").toDouble();
	double maxScore=minLLK;
	double meanAcc=0.0;
	double covAcc=0.0;
	unsigned long idxTar=0;
	bool verbose=config.existsParam("verbose");

	while((linep=inputList.getLine())!=NULL)
	{
		double score=linep->getElement(6).toDouble();
		if (score>=maxScore)
		{
			maxScore=score;		// this is the maximum score
			idxTar=cpt;			// index is just the line
			if (verbose) {cout << "giving highest score to " << linep->getElement(1) << " "<<maxScore << endl;} 
		}
		meanAcc+=score;			// Accumulate mean and cov
		covAcc+=(score*score);
          
		if (cpt%nbLoc==(nbLoc-1))	// when changing segment
		{	
			tarTab[cpttab]=idxTar;
			meanAcc-=maxScore;	//remove max from Stats
			covAcc-=(maxScore*maxScore);
			meanTab[cpttab]=meanAcc;
			covTab[cpttab]=covAcc;
			if (verbose) {cout << linep->getElement(1) << " max score: "<<maxScore <<"idx: "<<idxTar<<"cpt: "<<cpt<< " meanA: "<<meanAcc<<" covA: "<<covAcc<<endl;}
			cpttab++;	
			maxScore=minLLK;
			meanAcc=0.0;
			covAcc=0.0;
		}
		cpt++;
	}
}  
Example #7
0
void FactorAnalysisStat::estimateAndInverseLUnThreaded(){
	if (verbose) cout << "(FactorAnalysisStat) Inverse L Matrix ... "<<endl;	
	unsigned long mk;
	DoubleSquareMatrix L(_rang);	
	L.setAllValues(0.0);
	RealVector <double> AUX;
	AUX.setSize(_rang);
	unsigned long sent=0;
	XLine *pline;
	String *pFile;
	fileList.rewind();

	double *N_h=_matN_h.getArray(); 
	double *U=_matU.getArray();
	double *LV=L.getArray();
	double *super_invvar=_super_invvar.getArray();
	
	while((pline=fileList.getLine())!=NULL) {
		while((pFile=pline->getElement())!=NULL) {
			L.setAllValues(0.0);
			AUX.setAllValues(0.0);
			for(unsigned long i=0;i<_rang;i++){
				for(unsigned long j=0;j<=i;j++){
					for(unsigned long k=0;k<_supervsize;k++){
						mk=k/_vsize;
						LV[i*_rang+j]+=N_h[sent*_mixsize+mk]*super_invvar[k]*U[k*_rang+i]*U[k*_rang+j];
						}
					}
				}
			for(unsigned long i=0;i<_rang;i++)
				for(unsigned long j=i+1;j<_rang;j++) 
					LV[i*_rang+j]=LV[j*_rang+i];
				
			for(unsigned long i=0;i<_rang;i++) 
				LV[i*_rang+i]+=1.0;
			L.invert(_l_h_inv[sent]);	
			sent++;
		}
	}
};
Example #8
0
void FactorAnalysisStat::substractSpeakerStats(){
	if (verbose) cout <<"(FactorAnalysisStat) Compute and Substract Speaker FA Stats... " << endl;	
	RealVector <double> AUX1;AUX1.setSize(_supervsize); AUX1.setAllValues(0.0); double *aux1=AUX1.getArray();  
	
	// Compute Occupations and Statistics
	unsigned long loc=0; 
	unsigned long sent=0; 		
	XLine *pline; String *pFile; fileList.rewind();

	double *N_h=_matN_h.getArray(); 
	double *S_X_h=_matS_X_h.getArray();

	while((pline=fileList.getLine())!=NULL) { 
		while((pFile=pline->getElement())!=NULL) {
		this->getMplusDY(AUX1,*pFile);			
			for(unsigned long k=0;k<_mixsize;k++) 
				for (unsigned long i=0;i<_vsize;i++) 
					S_X_h[sent*_supervsize+(k*_vsize+i)]-= N_h[sent*_mixsize+k]*aux1[i+k*_vsize];
			sent++;
		}
		loc++;
	}
	if (verboseLevel >1) cout << "(FactorAnalysisStat) Done "<<endl;
};
//-------------------------------------------------------------------------
// Produce a tab with mean and cov by segment (mdtm and etf only)
void getSegmentalMeanCov(XList & inputList, unsigned long nbLoc, double* meanTab, double * covTab)
{
	XLine *linep;
	unsigned long cpt=0;
	unsigned long cpttab=0;
	double meanAcc=0.0;
	double covAcc=0.0;
     
	while((linep=inputList.getLine())!=NULL)
	{
		double score=linep->getElement(6).toDouble();
		meanAcc+=score;			// Accumulate mean and cov
		covAcc+=(score*score);
		if (cpt%nbLoc==(nbLoc-1))	// when changing segment
		{
			meanTab[cpttab]=meanAcc;
			covTab[cpttab]=covAcc;
			cpttab++;	
			meanAcc=0.0;
			covAcc=0.0;
		}
		cpt++;
	}
}
Example #10
0
int saveApost(Config &config)
{

 bool writeAllFeature=true; // Output a vector for all input vectors (selected and not selected vectors) - DEFAULT=on
 if (config.existsParam("writeAllFeatures")) writeAllFeature=config.getParam("writeAllFeatures").toBool();    // Define if all the feature     (selected or not) should be written

	String modelname = config.getParam("inputModelFilename");
	  String inputFeatureFileName =config.getParam("inputFeatureFilename");          // input feature - could be a simple feature file or a list of filenames
        XLine inputFeatureFileNameList;                                                // The (feature) input filename list
        if (inputFeatureFileName.endsWith(".lst")){                                   // If the file parameter is the name of a XList file
	   XList inputFileNameXList(inputFeatureFileName,config);                   // Read the filename list file
           inputFeatureFileNameList=inputFileNameXList.getAllElements();            // And put the filename in a list if the file is a list of feature filenames
			      }
      else {                                                                         // It was a simple feature file and not a filename list
	          inputFeatureFileNameList.addElement(inputFeatureFileName);                   // add the filename in the list
		    }

	try{

        // read UBM 
        MixtureServer _ms(config);
	StatServer _ss(config);
        _ms.loadMixtureGD(config.getParam("inputWorldFilename"));
        MixtureGD & UBM=_ms.getMixtureGD((unsigned long) 0);
        MixtureGDStat &acc=_ss.createAndStoreMixtureStat(UBM);

	unsigned long _vsize=UBM.getVectSize();
	unsigned long _mixsize=UBM.getDistribCount();
        // Loop over the list of feature files
	String *file;
	String labelSelectedFrames;
        unsigned long codeSelectedFrame;
	while ((file=inputFeatureFileNameList.getElement())!= NULL){         
	String & featureFilename=(*file);

	FeatureServer fs(config,featureFilename);
	FeatureServer fs_out(config,featureFilename);
        SegServer segmentsServer;
        LabelServer labelServer;
        initializeClusters(featureFilename,segmentsServer,labelServer,config);
        verifyClusterFile(segmentsServer,fs,config);
	labelSelectedFrames=config.getParam("labelSelectedFrames");
        codeSelectedFrame=labelServer.getLabelIndexByString(labelSelectedFrames);
        SegCluster& selectedSegments=segmentsServer.getCluster(codeSelectedFrame); 

	// Compute Occupations and Statistics
        acc.resetOcc();
        Seg *seg;
        selectedSegments.rewind();
        String currentSource="";
        while((seg=selectedSegments.getSeg())!=NULL){
                unsigned long begin=seg->begin()+fs.getFirstFeatureIndexOfASource(seg->sourceName());    // Idx of the first frame of the current file in the feature server
                if (currentSource!=seg->sourceName()) {
                currentSource=seg->sourceName();
                if (verbose)cout << "Processing speaker["<<currentSource<<"]"<< endl;
                }

                fs.seekFeature(begin);
                Feature f;

	for (unsigned long idxFrame=0;idxFrame<seg->length();idxFrame++){
                                fs.readFeature(f);
                                acc.computeAndAccumulateOcc(f);
                                RealVector <double> aPost=acc.getOccVect();

				Feature tmpF;
				for(unsigned long k=0;k<_mixsize;k++) {
				tmpF[k]=aPost[k];
				}

                                fs_out.addFeature(f);
}

}

// Writing apost probabilities to file 

	cout << "Writing to: " << featureFilename << endl;
		        FeatureFileWriter w(featureFilename, config);   // build a featurefile writer to output the features (real features)
			SegServer fakeSegServer;
		        if (writeAllFeature) {                  // Output all the features- feature count id the same SegServer fakeSegServer;                                          // Create a new fake segment server
		            fakeSegServer.createCluster(0);       // Create a new cluster
		            SegCluster& fakeSeg=fakeSegServer.getCluster(0);    // Get the cluster               
		            fakeSeg.add(fakeSegServer.createSeg(0,fs_out.getFeatureCount(),codeSelectedFrame, labelSelectedFrames,featureFilename));            // Add a segment with all the features
		            outputFeatureFile(config,fs_out,fakeSeg,w);   // output all the features - giving the same file length
		        }
		        else
		            outputFeatureFile(config,fs_out,selectedSegments, w);    // Output only the selected features - giving a shorter output 


}


	}	
	catch (Exception& e){cout << e.toString().c_str() << endl;}
return 0;
}
//-------------------------------------------------------------------------
int labelNGram(Config& config)
{
  if (config.existsParam("debug"))debug=true; else debug=false;  
  if (config.existsParam("verbose"))verbose=true; else verbose=false;
  String extOutputLabel=".sym.lbl";                                               // the extension of the output files    
  if (config.existsParam("saveLabelFileExtension")) extOutputLabel=config.getParam("saveLabelFileExtension");   
  String pathOutput="./";                                                // the path of the output files    
  if (config.existsParam("labelOutputPath")) pathOutput=config.getParam("labelOutputPath");    
  String extSymbol=".sym";                                               // the extension of the symbol files   
  if (config.existsParam("symbolFileExtension")) extSymbol=config.getParam("symbolFileExtension");   
  String pathSymbol="./";   
  if (config.existsParam("symbolPath")) pathSymbol=config.getParam("symbolPath");   
  String formatSymbol="ascii";   
  if (config.existsParam("symbolFormat")) pathSymbol=config.getParam("symbolFormat");  
 
  String NGramFilename=config.getParam("NGramFilename");                                        
  unsigned long NGramOrder=3;
  if (config.existsParam("NGramOrder")) NGramOrder=config.getParam("NGramOrder").toLong();  
  unsigned long NGramSelected=16;
  if (config.existsParam("NGramSelected")) NGramSelected=config.getParam("NGramSelected").toLong();  
  NGram NGramTable(NGramOrder,NGramSelected);
  NGramTable.load(NGramFilename,config);                       // Load the NGRAM table, selecting the NGramSelected first
 
  String inputFilename=config.getParam("inputFilename");
  String labelSelectedFrames=config.getParam("labelSelectedFrames");
  XLine inputFileList;
  try{
    if (inputFilename.endsWith(".lst")){ // input is file containing a list of filenames
      XList tmp(inputFilename,config);
      inputFileList=tmp.getAllElements();
    }
    else inputFileList.addElement(inputFilename); // a single filename
    String *p;
    while ((p=inputFileList.getElement())){
      String& filename=*p;
      if (verbose)
	cout <<"labelNGram file["<<filename<<"] Table["<<NGramFilename<<"] Order["<<NGramOrder<<"] Selected["<<NGramSelected<<"]"<<endl;
      SegServer segServer;                
      LabelServer labelServer;
      loadClusterFile(filename,segServer,labelServer,config);
      long codeSelectedFrame=labelServer.getLabelIndexByString(labelSelectedFrames);       // Get the index of the selected cluster
      if (codeSelectedFrame==-1){                                                             // No data for this model !!!!!!!!!!!!!!
      cout << " WARNING - NO DATA with the label["<<labelSelectedFrames<<"] in file ["<<filename<<"]"<<endl;
      exit(0);
      }
      SegCluster& cluster=segServer.getCluster(codeSelectedFrame);                                   // Gives the cluster of the selected/used segments
      ULongVector tabS;
      unsigned long nbSym=loadSymbol(pathSymbol+filename+extSymbol,formatSymbol,tabS,config);        // Read the stream of symbols
      SegServer segServerOutput;
      SegCluster& clusterOut=segServerOutput.createCluster(0,labelSelectedFrames,cluster.sourceName());  
      //  
      computeLabelNGram(NGramTable,cluster,clusterOut,tabS,nbSym);
      //
    
      if (verbose){
	cout <<"File["<<filename<<"]" <<endl;
	cout << "Output the new label file in ["<<pathOutput+filename+extOutputLabel <<"]"<<endl;
      }
      outputLabelFile(clusterOut,pathOutput+filename+extOutputLabel,config);
    } // end file loop
  } // fin try
  
  
  catch (Exception& e)
    { 
      cout << e.toString().c_str() << endl;
    }
  return 0;
}
//-----------------------------------------------------------------------------------------------------------------------------------------------------------
int TrainTargetLFA(Config& config)
{
	String inputClientListFileName = config.getParam("targetIdList");
	String inputWorldFilename = config.getParam("inputWorldFilename");
	String outputSERVERFilename = "";
	if (config.existsParam("mixtureServer")) outputSERVERFilename =config.getParam("mixtureServer");
	bool initByClient=false;                                              // In this case, the init model is read from the file
	if (config.existsParam("initByClient")) initByClient=config.getParam("initByClient").toBool();
	bool saveEmptyModel=false;
	if (config.existsParam("saveEmptyModel")) saveEmptyModel=config.getParam("saveEmptyModel").toBool();
	// label for selected frames - Only the frames associated with this label, in the label files, will be used
	bool fixedLabelSelectedFrame=true;
	String labelSelectedFrames;
	if (config.existsParam("useIdForSelectedFrame"))    // the ID of each speaker is used as labelSelectedFrame ?
		fixedLabelSelectedFrame=(config.getParam("useIdForSelectedFrame").toBool()==false);  
	if (fixedLabelSelectedFrame)                        // the label is decided by the command line and is unique for the run
		labelSelectedFrames=config.getParam("labelSelectedFrames");
	bool modelData=false;
	if (config.existsParam("useModelData")) modelData=config.getParam("useModelData").toBool();
	String initModelS=inputWorldFilename;
	if (modelData) if (config.existsParam("initModel")) initModelS=config.getParam("initModel"); // Use a specific model for Em init
	bool outputAdaptParam=false;
	if (config.existsParam("superVectors")) outputAdaptParam=true;
 
try{
	XList inputClientList(inputClientListFileName,config);          // read the Id + filenames for each client
	XLine * linep;
	inputClientList.getLine(0);
	MixtureServer ms(config);
	StatServer ss(config, ms);
	if (verbose) cout << "(TrainTarget) Latent Factor Analysis - Load world model [" << inputWorldFilename<<"]"<<endl;
	MixtureGD& world = ms.loadMixtureGD(inputWorldFilename);      
	if (verbose) cout <<"(TrainTarget) Use["<<initModelS<<"] for initializing EM"<<endl;
	
	//LOAD JFA MAtrices
	unsigned long svsize=world.getDistribCount()*world.getVectSize();
	Matrix<double> U, V; 
	DoubleVector D(svsize,svsize);
	
	//Initialise EC matrix
	if(config.existsParam("eigenChannelMatrix")){
		String uName = config.getParam("matrixFilesPath") + config.getParam("eigenChannelMatrix") + config.getParam("loadMatrixFilesExtension");
 		U.load (uName, config);
		if (verboseLevel >=1) cout << "(TrainTargetLFA) Init EC matrix from "<< config.getParam("eigenChannelMatrix") <<"  from EigenChannel Matrix: "<<", rank: ["<<U.rows() << "] sv size: [" << U.cols() <<"]"<<endl;
	}
	else{
		U.setDimensions(1,svsize);
		U.setAllValues(0.0);
		if (verboseLevel >1) cout << "(TrainTargetLFA) Init EC matrix to 0"<<endl;
	}
	
	V.setDimensions(1,svsize);
	V.setAllValues(0.0);
	if (verboseLevel >=1) cout << "(TrainTargetLFA) Init EV matrix to 0"<<endl;

	//Initialise the D matrix for MAP adaptation
	for(unsigned long i=0; i<world.getDistribCount(); i++){
		for(unsigned long j = 0; j<world.getVectSize(); j++){
			D[i*world.getVectSize()+j] = sqrt(1.0/(world.getDistrib(i).getCovInv(j)*config.getParam("regulationFactor").toDouble()));
		}
	}

	// *********** Target loop ***************** 
	while ((linep=inputClientList.getLine()) != NULL){             	// linep gives the XLine with the Id of a given client and the list of files

		String *id=linep->getElement();                              		// Get the Client ID (id)
		XLine featureFileListp=linep->getElements();	           	// Get the list of feature file for the client (end of the line)
		if (verbose) cout << "(TrainTargetLFA) Train model ["<<*id<<"]"<<endl;
	
		XList ndx; ndx.addLine() = featureFileListp;
		JFAAcc jfaAcc(ndx,config,"TrainTarget");
		
		//Charger les matrices V, U et D a partir des objets matrice existant.
		jfaAcc.loadEV(V, config); jfaAcc.loadEC(U, config); jfaAcc.loadD(D);  

		//Initialise VU matrix
		jfaAcc.initVU();

		FeatureServer fs(config,featureFileListp);											// Reading the features (from several files)
		SegServer segmentsServer;															// Create the segment server for managing the segments/clusters
		LabelServer labelServer;															// Create the lable server, for indexing the segments/clusters
		initializeClusters(featureFileListp,segmentsServer,labelServer,config);				// Reading the segmentation files for each feature input file
		verifyClusterFile(segmentsServer,fs,config);                                     	// Verify if the segments ending before the end of the feature files...

		MixtureGD & adaptedMixture = ms.duplicateMixture(world,DUPL_DISTRIB);               // Creating final as a copy of the world model
		MixtureGD & clientMixture= ms.duplicateMixture(world,DUPL_DISTRIB);
		long codeSelectedFrame=labelServer.getLabelIndexByString(labelSelectedFrames);   	// Get the index of the cluster with in interest audio segments
		if (codeSelectedFrame==-1){                                                         	// No data for this model !!!!!!!!!!!!!!
			cout << " WARNING - NO DATA FOR TRAINING ["<<*id<<"]";
			if (saveEmptyModel){
				cout <<" World model is returned"<<endl;                                    // In this case, the client model is the world model
				if (verbose) cout << "Save client model ["<<*id<<"]" << endl;
				adaptedMixture.save(*id, config);                                           // Save the client model
			}
		}			

		else{
			SegCluster& selectedSegments=segmentsServer.getCluster(codeSelectedFrame); // Gives the cluster of the selected/used segments                                   

			//Compute the JFA statistics
			jfaAcc.computeAndAccumulateJFAStat(selectedSegments,fs,config);

			//Estimate X and Y in one time for each speaker
			jfaAcc.storeAccs();
			jfaAcc.estimateVUEVUT(config);
			jfaAcc.estimateAndInverseL_VU(config);
			jfaAcc.substractMplusDZ(config);
			jfaAcc.estimateYX();
			//Reinitialise the accumulators
			jfaAcc.resetTmpAcc();
			jfaAcc.restoreAccs();
			
			//Split X and Y estimates
			jfaAcc.splitYX();

			//Substract speaker and channel statistics M + VUYX
			jfaAcc.substractMplusVUYX();		
			//Estimate Z for each speaker
			double tau = config.getParam("regulationFactor").toLong();
			jfaAcc.estimateZMAP(tau);
			//Reinitialise the accumulators
			jfaAcc.resetTmpAcc();
			jfaAcc.restoreAccs();

			bool varAdapt = false;
			if((config.existsParam("varAdapt")) && ( config.getParam("varAdapt").toBool() )){
				varAdapt = true;
			}

			DoubleVector clientModel(jfaAcc.getSvSize(), jfaAcc.getSvSize());
			clientModel.setSize(jfaAcc.getSvSize());

			jfaAcc.getMplusVYplusDZ(clientModel, 0);
			
			//Create the ClientMixture
			svToModel(clientModel, clientMixture);
			clientMixture.save(*id, config);

			long tid=ms.getMixtureIndex(*id);
			ms.deleteMixtures(tid,tid);
			ms.deleteUnusedDistribs();
		}
	}
} // fin try
catch (Exception& e) {cout << e.toString().c_str() << endl;}
return 0;
}
//-----------------------------------------------------------------------------------------------------------------------------------------------------------
int TrainTargetJFA(Config& config)
{
	String inputClientListFileName = config.getParam("targetIdList");
	String inputWorldFilename = config.getParam("inputWorldFilename");
	String outputSERVERFilename = "";
	if (config.existsParam("mixtureServer")) outputSERVERFilename =config.getParam("mixtureServer");
	bool initByClient=false;                                              // In this case, the init model is read from the file
	if (config.existsParam("initByClient")) initByClient=config.getParam("initByClient").toBool();
	bool saveEmptyModel=false;
	if (config.existsParam("saveEmptyModel")) saveEmptyModel=config.getParam("saveEmptyModel").toBool();
	// label for selected frames - Only the frames associated with this label, in the label files, will be used
	bool fixedLabelSelectedFrame=true;
	String labelSelectedFrames;
	if (config.existsParam("useIdForSelectedFrame"))    // the ID of each speaker is used as labelSelectedFrame ?
		fixedLabelSelectedFrame=(config.getParam("useIdForSelectedFrame").toBool()==false);  
	if (fixedLabelSelectedFrame)                        // the label is decided by the command line and is unique for the run
		labelSelectedFrames=config.getParam("labelSelectedFrames");
	bool modelData=false;
	if (config.existsParam("useModelData")) modelData=config.getParam("useModelData").toBool();
	String initModelS=inputWorldFilename;
	if (modelData) if (config.existsParam("initModel")) initModelS=config.getParam("initModel"); // Use a specific model for Em init
	bool outputAdaptParam=false;
	if (config.existsParam("superVectors")) outputAdaptParam=true;
 
try{
	XList inputClientList(inputClientListFileName,config);          // read the Id + filenames for each client
	XLine * linep;
	inputClientList.getLine(0);
	MixtureServer ms(config);
	StatServer ss(config, ms);
	if (verbose) cout << "(TrainTarget) Joint Factor Analysis - Load world model [" << inputWorldFilename<<"]"<<endl;
	MixtureGD& world = ms.loadMixtureGD(inputWorldFilename);      
	if (verbose) cout <<"(TrainTarget) Use["<<initModelS<<"] for initializing EM"<<endl;
	
	//LOAD JFA MAtrices
	Matrix<double> U, V; 
	DoubleVector D;
	
	//Initialise EC matrix
	if(config.existsParam("eigenChannelMatrix")){
		String uName = config.getParam("matrixFilesPath") + config.getParam("eigenChannelMatrix") + config.getParam("loadMatrixFilesExtension");
 		U.load (uName, config);
		if (verboseLevel >=1) cout << "(TrainTargetJFA) Init EC matrix from "<< config.getParam("eigenChannelMatrix") <<"  from EigenChannel Matrix: "<<", rank: ["<<U.rows() << "] sv size: [" << U.cols() <<"]"<<endl;
	}
	else{
		unsigned long sS = world.getVectSize() * world.getDistribCount();
		U.setDimensions(1,sS);
		U.setAllValues(0.0);
		if (verboseLevel >=1) cout << "(TrainTargetJFA) Init EC matrix to 0"<<endl;
	}
	
	//Initialise EV matrix
	if(config.existsParam("eigenVoiceMatrix")){
		String vName = config.getParam("matrixFilesPath") + config.getParam("eigenVoiceMatrix") + config.getParam("loadMatrixFilesExtension");
		V.load (vName, config);
		if (verboseLevel >=1) cout << "(TrainTargetJFA) Init EV matrix from "<< config.getParam("eigenVoiceMatrix") <<"  from EigenVoice Matrix: "<<", rank: ["<<V.rows() << "] sv size: [" << V.cols() <<"]"<<endl;
	}
	else{
		unsigned long sS = world.getVectSize() * world.getDistribCount();
		V.setDimensions(1,sS);
		V.setAllValues(0.0);
		if (verboseLevel >=1) cout << "(TrainTargetJFA) Init EV matrix to 0"<<endl;
	}
	
	//Initialise D matrix
	if(config.existsParam("DMatrix")){
		String dName = config.getParam("matrixFilesPath") + config.getParam("DMatrix") + config.getParam("loadMatrixFilesExtension");
		Matrix<double> tmpD(dName, config);
		
		if( (tmpD.rows() != 1) || ( tmpD.cols() != world.getVectSize()*world.getDistribCount() ) ){
			throw Exception("Incorrect dimension of D Matrix",__FILE__,__LINE__);
		}
		else{
			D.setSize(world.getVectSize()*world.getDistribCount());
			D.setAllValues(0.0);
			for(unsigned long i=0; i<world.getVectSize()*world.getDistribCount(); i++){
				D[i] = tmpD(0,i);
			}
			if (verboseLevel >=1) cout << "(TrainTargetJFA) Init D matrix from "<<config.getParam("DMatrix")<<endl;
		}
	}
	else{
		unsigned long sS = world.getVectSize() * world.getDistribCount();
		D.setSize(sS);
		D.setAllValues(0.0);
		if (verboseLevel >1) cout << "(TrainTargetJFA) Init D matrix to 0"<<endl;
	}
	
	// *********** Target loop ***************** 
	while ((linep=inputClientList.getLine()) != NULL){             	// linep gives the XLine with the Id of a given client and the list of files

		String *id=linep->getElement();                              		// Get the Client ID (id)
		XLine featureFileListp=linep->getElements();	           	// Get the list of feature file for the client (end of the line)
		if (verbose) cout << "(TrainTarget) Train model ["<<*id<<"]"<<endl;
	
		XList ndx; ndx.addLine() = featureFileListp;
		JFAAcc jfaAcc(ndx,config,"TrainTarget");

		//Load V, U and D from existing matrices.
		jfaAcc.loadEV(V, config); jfaAcc.loadEC(U, config); jfaAcc.loadD(D);  

		//Initialize VU matrix
		jfaAcc.initVU();

		FeatureServer fs(config,featureFileListp);                                            			// Reading the features (from several files)
		SegServer segmentsServer;                                                             				// Create the segment server for managing the segments/clusters
		LabelServer labelServer;                                                              				// Create the lable server, for indexing the segments/clusters
		initializeClusters(featureFileListp,segmentsServer,labelServer,config);         		// Reading the segmentation files for each feature input file
		verifyClusterFile(segmentsServer,fs,config);                                     				// Verify if the segments ending before the end of the feature files...

		MixtureGD & adaptedMixture = ms.duplicateMixture(world,DUPL_DISTRIB);                 	// Creating final as a copy of the world model
		MixtureGD & clientMixture= ms.duplicateMixture(world,DUPL_DISTRIB);
		long codeSelectedFrame=labelServer.getLabelIndexByString(labelSelectedFrames);   	// Get the index of the cluster with in interest audio segments
		if (codeSelectedFrame==-1){                                                           					// No data for this model !!!!!!!!!!!!!!
			cout << " WARNING - NO DATA FOR TRAINING ["<<*id<<"]";
			if (saveEmptyModel){
				cout <<" World model is returned"<<endl;                                    				// In this case, the client model is the world model
				if (verbose) cout << "Save client model ["<<*id<<"]" << endl;
				adaptedMixture.save(*id, config);                                           					// Save the client model
			}
		}			

		else{
			SegCluster& selectedSegments=segmentsServer.getCluster(codeSelectedFrame); // Gives the cluster of the selected/used segments                                   

			//Compute the JFA statistics
			jfaAcc.computeAndAccumulateJFAStat(selectedSegments,fs,config);

			//Estimate X and Y in one time for each speaker
			jfaAcc.storeAccs();
			jfaAcc.estimateVUEVUT(config);

			jfaAcc.estimateAndInverseL_VU(config);

			jfaAcc.substractMplusDZ(config);

			jfaAcc.estimateYX();
			//Reinitialise the accumulators
			jfaAcc.resetTmpAcc();
			jfaAcc.restoreAccs();
			
			//Split X and Y estimates
			jfaAcc.splitYX();

			//Substract speaker and channel statistics M + VUYX
			jfaAcc.substractMplusVUYX();		
			//Estimate Z for each speaker
			jfaAcc.estimateZ();
			//Reinitialise the accumulators
			jfaAcc.resetTmpAcc();
			jfaAcc.restoreAccs();

			bool varAdapt = false;
			if((config.existsParam("varAdapt")) && ( config.getParam("varAdapt").toBool() )){
				varAdapt = true;
			}

			DoubleVector clientSV(jfaAcc.getSvSize(), jfaAcc.getSvSize());
			clientSV.setSize(jfaAcc.getSvSize());
			DoubleVector clientModel(jfaAcc.getSvSize(), jfaAcc.getSvSize());
			clientModel.setSize(jfaAcc.getSvSize());

			bool saveMixture = true;
			if((config.existsParam("saveMixture")) && !( config.getParam("saveMixture").toBool() ))	saveMixture = false;
			bool saveSuperVector = true;
			if((config.existsParam("saveSuperVector")) && !( config.getParam("saveSuperVector").toBool() ))	saveSuperVector = false;
			bool saveX = false;
			bool saveY = false;
			bool saveZ = false;


			if(config.existsParam("saveX"))			saveX = config.getParam("saveX").toBool();
			if(config.existsParam("saveY"))			saveY = config.getParam("saveY").toBool();
			if(config.existsParam("saveZ"))			saveZ = config.getParam("saveZ").toBool();
			String xExtension = ".x"; String yExtension = ".y"; String zExtension = ".z";
			if(config.existsParam("xExtension"))	xExtension = config.getParam("xExtension");
			if(config.existsParam("yExtension"))	yExtension = config.getParam("yExtension");
			if(config.existsParam("zExtension"))	zExtension = config.getParam("zExtension");

			jfaAcc.getVYplusDZ(clientSV, 0);
			jfaAcc.getMplusVYplusDZ(clientModel, 0);
			
			//WARNING !!!!! only the SuperVector model is divided by the UBM Co-Variance.
			for(unsigned long i=0; i<jfaAcc.getSvSize(); i++){
				clientSV[i] *= jfaAcc.getUbmInvVar()[i];
			}
			
			//Create the ClientMixture to save if required
			if(saveMixture){
				svToModel(clientModel, clientMixture);
				clientMixture.save(*id, config);
			}

			if(saveSuperVector){
				String svPath=config.getParam("saveVectorFilesPath");
				String svExt=config.getParam("vectorFilesExtension"); 
				String svFile=svPath+*id+svExt; 
				((Matrix<double>)clientSV).save(svFile,config);   
			}

			String svPath=config.getParam("saveVectorFilesPath");

			if(saveX){
				String xFile=svPath+*id+xExtension;
				jfaAcc.saveX(xFile,config);
			}
			if(saveY){
				String yFile=svPath+*id+yExtension;
				jfaAcc.saveY(yFile,config);
			}
			if(saveZ){
				String zFile=svPath+*id+zExtension;
				jfaAcc.saveZ(zFile,config);
			}

			long tid=ms.getMixtureIndex(*id);
			ms.deleteMixtures(tid,tid);
			ms.deleteUnusedDistribs();
		}
	}
} // fin try
catch (Exception& e) {cout << e.toString().c_str() << endl;}
return 0;
}
//-----------------------------------------------------------------------------------------------------------------------------------------------------------
int TrainTargetFA(Config& config)
{
  String inputClientListFileName = config.getParam("targetIdList");
  String inputWorldFilename = config.getParam("inputWorldFilename");
  String outputSERVERFilename = "";
  if (config.existsParam("mixtureServer")) outputSERVERFilename =config.getParam("mixtureServer");
  bool initByClient=false;                                              // In this case, the init model is read from the file
  if (config.existsParam("initByClient")) initByClient=config.getParam("initByClient").toBool();
  bool saveEmptyModel=false;
  if (config.existsParam("saveEmptyModel")) saveEmptyModel=config.getParam("saveEmptyModel").toBool();
  // label for selected frames - Only the frames associated with this label, in the label files, will be used
  bool fixedLabelSelectedFrame=true;
  String labelSelectedFrames;
  if (config.existsParam("useIdForSelectedFrame"))    // the ID of each speaker is used as labelSelectedFrame ?
    fixedLabelSelectedFrame=(config.getParam("useIdForSelectedFrame").toBool()==false);  
  if (fixedLabelSelectedFrame)                        // the label is decided by the command line and is unique for the run
    labelSelectedFrames=config.getParam("labelSelectedFrames");
  bool modelData=false;
  if (config.existsParam("useModelData")) modelData=config.getParam("useModelData").toBool();
  String initModelS=inputWorldFilename;
  if (modelData) if (config.existsParam("initModel")) initModelS=config.getParam("initModel"); // Use a specific model for Em init
  bool outputAdaptParam=false;
  if (config.existsParam("superVectors")) outputAdaptParam=true;
  Matrix <double> ChannelMatrix;
  if (verbose) cout<< "EigenMAP and Eigenchannel with [" << config.getParam("initChannelMatrix") << "] of size: ["; 
  ChannelMatrix.load(config.getParam("initChannelMatrix"),config); //get Channel Matrix from args and load in a Matrix object
  if (verbose) cout << ChannelMatrix.rows() << "," <<ChannelMatrix.cols() << "]" << endl;
  bool varAdapt=false;
  if (config.existsParam("FAVarAdapt")) varAdapt=true;
  bool saveCompleteServer=false;
 
  try{
    XList inputClientList(inputClientListFileName,config);          // read the Id + filenames for each client
    XLine * linep;
    inputClientList.getLine(0);
    MixtureServer ms(config);
    StatServer ss(config, ms);
    if (verbose) cout << "(TrainTarget) Factor Analysis - Load world model [" << inputWorldFilename<<"]"<<endl;
    MixtureGD& world = ms.loadMixtureGD(inputWorldFilename);      
    if (verbose) cout <<"(TrainTarget) Use["<<initModelS<<"] for initializing EM"<<endl;
    
    // *********** Target loop ***************** 
    while ((linep=inputClientList.getLine()) != NULL){             // linep gives the XLine with the Id of a given client and the list of files

      String *id=linep->getElement();                              // Get the Client ID (id)
      XLine featureFileListp=linep->getElements();	           // Get the list of feature file for the client (end of the line)
      if (verbose) cout << "(TrainTarget) Train model ["<<*id<<"]"<<endl;   
      FeatureServer fs(config,featureFileListp);                                            // Reading the features (from several files)
      SegServer segmentsServer;                                                             // Create the segment server for managing the segments/clusters
      LabelServer labelServer;                                                              // Create the lable server, for indexing the segments/clusters
      initializeClusters(featureFileListp,segmentsServer,labelServer,config);               // Reading the segmentation files for each feature input file
      verifyClusterFile(segmentsServer,fs,config);                                          // Verify if the segments ending before the end of the feature files...
      MixtureGD & adaptedMixture = ms.duplicateMixture(world,DUPL_DISTRIB);                 // Creating final as a copy of the world model
      MixtureGD & clientMixture= ms.duplicateMixture(world,DUPL_DISTRIB);
      long codeSelectedFrame=labelServer.getLabelIndexByString(labelSelectedFrames);        // Get the index of the cluster with in interest audio segments
      if (codeSelectedFrame==-1){                                                           // No data for this model !!!!!!!!!!!!!!
	cout << " WARNING - NO DATA FOR TRAINING ["<<*id<<"]";
	if (saveEmptyModel){
	  cout <<" World model is returned"<<endl;                                    // In this case, the client model is the world model
	  if (verbose) cout << "Save client model ["<<*id<<"]" << endl;
	  adaptedMixture.save(*id, config);                                           // Save the client model
	}
      }
      else{
	SegCluster& selectedSegments=segmentsServer.getCluster(codeSelectedFrame); // Gives the cluster of the selected/used segments                                   
        /// **** Factor Analysis Stuff
        XList faNdx;
        faNdx.addLine()=featureFileListp; 
        FactorAnalysisStat FA(faNdx,fs,config); // give all features to FA stats
        
        //FA.computeAndAccumulateGeneralFAStats(selectedSegments,fs,config);    
        for(int i=0;i<config.getParam("nbTrainIt").toLong();i++){
          if (verbose) cout << "------ Iteration ["<<i<<"] ------"<<endl;
          FA.computeAndAccumulateGeneralFAStats(selectedSegments,fs,config);                
          /*if (!varAdapt) FA.getTrueSpeakerModel(clientMixture,linep->getElement(1));
          else FA.getFactorAnalysisModel(clientMixture,linep->getElement(1));
          if (verbose) cout << "LLK for model["<<*id<<"] at it["<<i-1<<"]="<<FA.getLLK(selectedSegments,clientMixture,fs,config) << endl; */
          FA.estimateAndInverseL(config);
          FA.substractSpeakerStats();
          FA.getXEstimate();
          FA.substractChannelStats(); 
          FA.getYEstimate();    
      }      
      MixtureGD & sessionMixture= ms.duplicateMixture(world,DUPL_DISTRIB);
      bool saveSessionModel=false;
      if (config.existsParam("saveSessionModel")) saveSessionModel=true;
      if (saveSessionModel) FA.getSessionModel(sessionMixture,linep->getElement(1));
      if (!varAdapt) FA.getTrueSpeakerModel(clientMixture,linep->getElement(1)); // basically compute M_s_h=M+Dy_s and get a model
      else FA.getFactorAnalysisModel(clientMixture,linep->getElement(1)); // get FA variance adapted model
      if (verbose) cout << "Final LLK for model["<<*id<<"]="<<FA.getLLK(selectedSegments,clientMixture,fs,config) << endl;    

      /// **** End of FA
        if (!outputAdaptParam) {
            if (verbose) cout << "Save client model ["<<*id<<"]" << endl;
            clientMixture.save(*id, config);                                           // Save the client model
            if (saveSessionModel) {
              String sessionfile=*id+".session";
              if (verbose) cout << "Save session model ["<<sessionfile<<"]" << endl;              
              sessionMixture.save(sessionfile,config);   
            }              
        }
	if (!saveCompleteServer){
	  long tid=ms.getMixtureIndex(*id);      // TO BE SUPPRESSED BY
	  ms.deleteMixtures(tid,tid);            // ADDING a delete on a mixture pointor
	  ms.deleteUnusedDistribs();
	  }
      }
    }    
  } // fin try
catch (Exception& e) {cout << e.toString().c_str() << endl;}
  return 0;
}
// Training of client Speakers
// The same than TrainTarget but train simultaneoulsy 1 model for each cluster (set of segments with the same label)
// found in the input files labels.
// One option in order to save the n models as a modification of the world model - save disk space
 int TrainTargetByLabel(Config& config)
{
  String inputClientListFileName = config.getParam("targetIdList");
  String inputWorldFilename = config.getParam("inputWorldFilename");
  String outputSERVERFilename = config.getParam("mixtureServer");
  // label for selected frames - Only the frames associated with this label, in the label files, will be used
  //bool fixedLabelSelectedFrame;
  bool initByClient=false;
  bool aprioriWorld=true;
  if (config.existsParam("initByClient")) initByClient=true;
  if (config.existsParam("aprioriClient")){
    aprioriWorld=false;
    initByClient=true;
  }
  bool saveCompleteServer=false;
  bool outputAdaptParam=false;
  if (config.existsParam("outputAdaptParam")) outputAdaptParam=config.getParam("outputAdaptParam").toBool();
  
  try{
    XList inputClientList(inputClientListFileName,config);          // read the Id + filenames for each client
    XLine *linep;
    inputClientList.getLine(0);
    MixtureServer ms(config);
    StatServer ss(config, ms);
    if (verbose) cout << "TrainTarget - by label opption - Load world model [" << inputWorldFilename<<"]"<<endl;
    MixtureGD& world = ms.loadMixtureGD(inputWorldFilename);
    // *********** Target loop ***************** 
    while ((linep=inputClientList.getLine()) != NULL){             // linep gives the XLine with the Id of a given client and the list of files
      String clientId=(*linep->getElement());                      // Get the Client ID (clientId)
      XLine featureFileListp=linep->getElements();	           // Get the list of feature file for the client (end of the line)
      FeatureServer fs(config,featureFileListp);                   // Reading the features (from several files)
      if (verbose) cout << "Train label models for client ["<<clientId<<"]"<<endl;   
      MixtureGD &clientGModel=ms.createMixtureGD();
      if (initByClient) {
          if (verbose) cout << "Load client model [" << clientId <<"]"<<endl;
          clientGModel = ms.loadMixtureGD(clientId); //not necessary to load client model
      }
      SegServer segmentsServer;                                                             // Create the segment server for managing the segments/clusters
      LabelServer labelServer;                                                              // Create the lable server, for indexing the segments/clusters
      initializeClusters(featureFileListp,segmentsServer,labelServer,config);               // Reading the segmentation files for each feature input file
      verifyClusterFile(segmentsServer,fs,config);                                          // Verify if the segments ending before the end of the feature files...
      for (unsigned long codeSelectedFrame=0;codeSelectedFrame<segmentsServer.getClusterCount();codeSelectedFrame++){ // For each cluster
	String clientIdByLabel=clientId+"_"+labelServer.getLabel(codeSelectedFrame).getString(); // Build the model name for the client and the label
	if (verbose) cout << "Train labeldependent model ["<<clientIdByLabel<<"]"<<endl;   
	SegCluster& selectedSegments=segmentsServer.getCluster(codeSelectedFrame);          // Gives the cluster of the selected/used segments
	MixtureGD & clientMixture = ms.duplicateMixture(world,DUPL_DISTRIB);       // Creating clientMixture as a copy of the world model
	ms.setMixtureId(clientMixture,clientIdByLabel);                                     // Set the client model Id
	if (initByClient)                                                                   // During trainig data statistic estimation by EM,
	  clientMixture=clientGModel;                                                       // the global client model is used for initalization
	if (aprioriWorld)                                                                   // EM algo with MAP criterion
	  adaptModel(config,ss,ms,fs,selectedSegments,world,clientMixture);          // A priori info is the world model  
	else adaptModel(config,ss,ms,fs,selectedSegments,clientGModel,clientMixture);// A priori info is the client model-by default initByClient is also set
        if (!outputAdaptParam) {
            if (verbose) cout << "Save client model ["<<clientIdByLabel<<"]" << endl;
            clientMixture.save(clientIdByLabel, config);                                           // Save the client model
        }
	if (!saveCompleteServer){
	  long tid=ms.getMixtureIndex(clientIdByLabel);      // TO BE SUPPRESSED BY
	  ms.deleteMixtures(tid,tid);            // ADDING a delete on a mixture pointor
	  ms.deleteUnusedDistribs();
	  }
      }      
      if (!saveCompleteServer){
	long tid=ms.getMixtureIndex(clientId);      // TO BE SUPPRESSED BY
	ms.deleteMixtures(tid,tid);                 // ADDING a delete on a mixture pointor
	ms.deleteUnusedDistribs();
      }                                                                   // end of the the label loop fr a speaker
    } // end of the the target loop 
    
    // Save the complete mixture server
    // TODO
  } // fin try
  

  
  catch (Exception& e)
    { 
      cout << e.toString().c_str() << endl;
    }
  return 0;
}
// Training of client Speakers
// Input: Xlist	Format: ID_Client Seg1 Seg2 ..
// Output: ALIZE_MixtureServer (binaire) + GMM / Client (binary)
 int TrainTarget(Config& config)
{
  String inputClientListFileName = config.getParam("targetIdList");
  String inputWorldFilename = config.getParam("inputWorldFilename");
  String outputSERVERFilename = "";
  if (config.existsParam("mixtureServer")) outputSERVERFilename =config.getParam("mixtureServer");
  bool initByClient=false;                                              // In this case, the init model is read from the file
  if (config.existsParam("initByClient")) initByClient=config.getParam("initByClient").toBool();
  bool saveEmptyModel=false;
  if (config.existsParam("saveEmptyModel")) saveEmptyModel=config.getParam("saveEmptyModel").toBool();
  // label for selected frames - Only the frames associated with this label, in the label files, will be used
  bool fixedLabelSelectedFrame=true;
  String labelSelectedFrames;
  if (config.existsParam("useIdForSelectedFrame"))    // the ID of each speaker is used as labelSelectedFrame ?
    fixedLabelSelectedFrame=(config.getParam("useIdForSelectedFrame").toBool()==false);  
  if (fixedLabelSelectedFrame)                        // the label is decided by the command line and is unique for the run
    labelSelectedFrames=config.getParam("labelSelectedFrames");
  bool modelData=false;
  if (config.existsParam("useModelData")) modelData=config.getParam("useModelData").toBool();
  String initModelS=inputWorldFilename;
  if (modelData) if (config.existsParam("initModel")) initModelS=config.getParam("initModel"); // Use a specific model for Em init
  bool outputAdaptParam=false;
   if (config.existsParam("superVector")) outputAdaptParam=true;
  bool NAP=false;
  Matrix <double> ChannelMatrix;
  if (config.existsParam("NAP")) {
     if (verbose) cout<< "Removing channel effect with NAP from " << config.getParam("NAP") << " of size: ["; 
    NAP=true; // enable NAP
    ChannelMatrix.load(config.getParam("NAP"),config); //get Channel Matrix from args and load in a Matrix object
     if (verbose) cout << ChannelMatrix.rows() << "," <<ChannelMatrix.cols() << "]" << endl;
    }
    

  bool saveCompleteServer=false;
 
  try{
    XList inputClientList(inputClientListFileName,config);          // read the Id + filenames for each client
    XLine * linep;
    inputClientList.getLine(0);
    MixtureServer ms(config);
    StatServer ss(config, ms);
    if (verbose) cout << "TrainTarget - Load world model [" << inputWorldFilename<<"]"<<endl;
    MixtureGD& world = ms.loadMixtureGD(inputWorldFilename);
    MixtureGD& initModel =ms.loadMixtureGD(initModelS);
   
    if (verbose) cout <<"Use["<<initModelS<<"] for initializing EM"<<endl;
    
    // *********** Target loop ***************** 
    while ((linep=inputClientList.getLine()) != NULL){             // linep gives the XLine with the Id of a given client and the list of files
      String *id=linep->getElement();                              // Get the Client ID (id)
      XLine featureFileListp=linep->getElements();	           // Get the list of feature file for the client (end of the line)
      if (verbose) cout << "Train model ["<<*id<<"]"<<endl;   
      if (!fixedLabelSelectedFrame){                                // the ID is used as label for selecting the frame
	labelSelectedFrames=*id;
	if (verbose) cout <<*id<<" is used for label selected frames"<<endl;
      }
      FeatureServer fs(config,featureFileListp);                                            // Reading the features (from several files)
      SegServer segmentsServer;                                                             // Create the segment server for managing the segments/clusters
      LabelServer labelServer;                                                              // Create the lable server, for indexing the segments/clusters
      initializeClusters(featureFileListp,segmentsServer,labelServer,config);               // Reading the segmentation files for each feature input file
      verifyClusterFile(segmentsServer,fs,config);                                          // Verify if the segments ending before the end of the feature files...
      MixtureGD & adaptedMixture = ms.duplicateMixture(world,DUPL_DISTRIB);                 // Creating final as a copy of the world model
      MixtureGD & clientMixture= ms.duplicateMixture(world,DUPL_DISTRIB);
      if (initByClient){                                                                   // During trainig data statistic estimation by EM,
	clientMixture= ms.loadMixtureGD(*id);                                               // the client model is used for initalization
	adaptedMixture=clientMixture;
      }
      long codeSelectedFrame=labelServer.getLabelIndexByString(labelSelectedFrames);        // Get the index of the cluster with in interest audio segments
      if (codeSelectedFrame==-1){                                                           // No data for this model !!!!!!!!!!!!!!
	cout << " WARNING - NO DATA FOR TRAINING ["<<*id<<"]";
	if (saveEmptyModel){
	  cout <<" World model is returned"<<endl;                                    // In this case, the client model is the world model
	  if (verbose) cout << "Save client model ["<<*id<<"]" << endl;
	  adaptedMixture.save(*id, config);                                           // Save the client model
	}
      }
      else{
	SegCluster& selectedSegments=segmentsServer.getCluster(codeSelectedFrame); // Gives the cluster of the selected/used segments                                   
	if (!initByClient) ms.setMixtureId(clientMixture,*id);                                        // Set the client model Id
	if (modelData) modelBasedadaptModel(config,ss,ms,fs,selectedSegments,world,clientMixture,initModel);          // EM algo with MAP criterion
	else adaptModel(config,ss,ms,fs,selectedSegments,world,clientMixture);          // EM algo with MAP criterion
        if (NAP) {
          if (verbose) cout << "NAP on SVs" << endl;
          computeNap(clientMixture,ChannelMatrix);
        }
        if (outputAdaptParam) {
            RealVector<double> v;
            getSuperVector(v,world,clientMixture,config);   
           String out=config.getParam("saveVectorFilesPath")+*id+config.getParam("vectorFilesExtension");        
            Matrix <double> vv=(Matrix<double>)v;
            vv.save(out,config);     
          }
        if (!outputAdaptParam) {
            if (verbose) cout << "Save client model ["<<*id<<"]" << endl;
            clientMixture.save(*id, config);                                           // Save the client model
        }
	if (!saveCompleteServer){
	  long tid=ms.getMixtureIndex(*id);      // TO BE SUPPRESSED BY
	  ms.deleteMixtures(tid,tid);            // ADDING a delete on a mixture pointor
	  ms.deleteUnusedDistribs();
	  }
      }
    }                                                                              // end of the the target loop 
    
    // Save the complete mixture server
    // TODO
  } // fin try
   


  catch (Exception& e)
    { 
      cout << e.toString().c_str() << endl;
    }
  return 0;
}