Example #1
0
array bagging(array &train_feats, array &test_feats, array &train_labels,
              int num_classes, int num_models, int sample_size)
{
    int num_train = train_feats.dims(0);
    int num_test  =  test_feats.dims(0);

    array idx = floor(randu(sample_size, num_models) * num_train);
    array labels_all = constant(0, num_test, num_classes);
    array off = seq(num_test);

    for (int i = 0; i < num_models; i++) {
        array ii = idx(span, i);

        array train_feats_ii  = lookup(train_feats, ii, 0);
        array train_labels_ii = train_labels(ii);

        // Get the predicted results
        array labels_ii = knn(train_feats_ii, test_feats, train_labels_ii);
        array lidx = labels_ii * num_test + off;

        labels_all(lidx) = labels_all(lidx) + 1;
    }

    array val, labels;
    max(val, labels, labels_all, 1);

    return labels;
}
Example #2
0
array train(const array &X, const array &Y, double alpha = 0.1,
            double lambda = 1.0, double maxerr = 0.01, int maxiter = 1000,
            bool verbose = false) {
    // Initialize parameters to 0
    array Weights = constant(0, X.dims(1), Y.dims(1));

    array J, dJ;
    float err = 0;

    for (int i = 0; i < maxiter; i++) {
        // Get the cost and gradient
        cost(J, dJ, Weights, X, Y, lambda);

        err = max<float>(abs(J));
        if (err < maxerr) {
            printf("Iteration %4d Err: %.4f\n", i + 1, err);
            printf("Training converged\n");
            return Weights;
        }

        if (verbose && ((i + 1) % 10 == 0)) {
            printf("Iteration %4d Err: %.4f\n", i + 1, err);
        }

        // Update the parameters via gradient descent
        Weights = Weights - alpha * dJ;
    }

    printf("Training stopped after %d iterations\n", maxiter);
    return Weights;
}
Example #3
0
array train(const array &X, const array &Y,
            double alpha = 0.1,
            double maxerr = 0.05,
            int maxiter = 1000, bool verbose = false)
{

    // Initialize parameters to 0
    array Weights = constant(0, X.dims(1), Y.dims(1));

    for (int i = 0; i < maxiter; i++) {
        array P = predict(X, Weights);
        array err = Y - P;

        float mean_abs_err = mean<float>(abs(err));
        if (mean_abs_err  < maxerr) break;

        if (verbose && (i + 1) % 25 == 0) {
            printf("Iter: %d, Err: %.4f\n", i + 1, mean_abs_err);
        }

        Weights = Weights + alpha * matmulTN(X, err);
    }

    return Weights;
}
void cost(array &J, array &dJ, const array &Weights,
          const array &X, const array &Y, double lambda = 1.0)
{
    // Number of samples
    int m = Y.dims(0);

    // Make the lambda corresponding to Weights(0) == 0
    array lambdat = constant(lambda, Weights.dims());

    // No regularization for bias weights
    lambdat(0, span) = 0;

    // Get the prediction
    array H = predict(X, Weights);

    // Cost of misprediction
    array Jerr =  -sum(Y * log(H) + (1 - Y) * log(1 - H));

    // Regularization cost
    array Jreg = 0.5 * sum(lambdat * Weights * Weights);

    // Total cost
    J = (Jerr + Jreg) / m;

    // Find the gradient of cost
    array D = (H - Y);
    dJ = (matmulTN(X, D) + lambdat * Weights) / m;
}
Example #5
0
// Calculate all the distances from testing set to training set
array distance(array train, array test)
{

    const int feat_len = train.dims(1);
    const int num_train = train.dims(0);
    const int num_test  =  test.dims(0);

    array dist = constant(0, num_train, num_test);

    // Iterate over each attribute
    for (int ii = 0; ii < feat_len; ii++) {

        // Get a attribute vectors
        array train_i = train(span, ii);
        array test_i  = test (span, ii).T();

        // Tile the vectors to generate matrices
        array train_tiled = tile(train_i, 1,   num_test);
        array test_tiled  = tile( test_i, num_train, 1 );

        // Add the distance for this attribute
        dist = dist + abs(train_tiled - test_tiled);
        dist.eval(); // Necessary to free up train_i, test_i
    }

    return dist;
}
/**
* a - foregound image
* b - background image
* mask - mask map
* */
array alphaBlend(const array &a, const array &b, const array &mask)
{
    array tiledMask;
    if (mask.dims(2) != a.dims(2))
        tiledMask = tile(mask, 1, 1, a.dims(2));
    return a*tiledMask + (1.0f - tiledMask)*b;
}
Example #7
0
array matmul(const array &a, const array &b, const array &c) {
    int tmp1 = a.dims(0) * b.dims(1);
    int tmp2 = b.dims(0) * c.dims(1);

    if (tmp1 < tmp2) {
        return matmul(matmul(a, b), c);
    } else {
        return matmul(a, matmul(b, c));
    }
}
Example #8
0
array matmul(const array &a, const array &b, const array &c, const array &d) {
    int tmp1 = a.dims(0) * c.dims(1);
    int tmp2 = b.dims(0) * d.dims(1);

    if (tmp1 < tmp2) {
        return matmul(matmul(a, b, c), d);
    } else {
        return matmul(a, matmul(b, c, d));
    }
}
Example #9
0
array border(const array& img, const int left, const int right,
        const int top, const int bottom,
        const float value = 0.0)
{
    if((int)img.dims(0) < (top + bottom))
        std::cerr << "input does not have enough rows" << std::endl;
    if((int)img.dims(1) < (left + right))
        std::cerr << "input does not have enough columns" << std::endl;

    dim4 imgDims = img.dims();
    array ret = constant(value, imgDims);
    ret(seq(top, imgDims[0]-bottom), seq(left, imgDims[1]-right), span, span) =
        img(seq(top, imgDims[0]-bottom), seq(left, imgDims[1]-right), span, span);

    return ret;
}
Example #10
0
array blur(const array& img, const array mask = gaussianKernel(3,3))
{
    array blurred = array(img.dims(), img.type());
    for(int i = 0; i < (int)blurred.dims(2); i++)
        blurred(span, span, i) = convolve(img(span, span, i), mask);
    return blurred;
}
Example #11
0
 void max(array &val, array &idx, const array &in, const int dim)
 {
     af_array out = 0;
     af_array loc = 0;
     AF_THROW(af_imax(&out, &loc, in.get(), getFNSD(dim, in.dims())));
     val = array(out);
     idx = array(loc);
 }
Example #12
0
array medianfilter(const array &in, int window_width, int window_height)
{
    array ret_val(in.dims());
    ret_val(span, span, 0) = medfilt(in(span, span, 0), window_width, window_height);
    ret_val(span, span, 1) = medfilt(in(span, span, 1), window_width, window_height);
    ret_val(span, span, 2) = medfilt(in(span, span, 2), window_width, window_height);
    return ret_val;
}
Example #13
0
/**
* randomization - controls % of total number of pixels in the image
* that will be effected by random noise
* repeat - # of times the process is carried out on the previous steps output
*/
array pick(const array &in, int randomization, int repeat)
{
    int w = in.dims(0);
    int h = in.dims(1);
    float f = randomization / 100.0f;
    int dim = (int)(f*w*h);
    array ret_val = in.copy();
    for (int i = 0; i<repeat; ++i) {
        array idxs = (w*h)  * randu(dim);
        array rnd = getRandomNeighbor(ret_val, 1, 1);
        array temp_src = moddims(rnd, w*h, 3);
        array temp_dst = moddims(ret_val, w*h, 3);
        temp_dst(idxs, span) = temp_src(idxs, span);
        ret_val = moddims(temp_dst, in.dims());
    }
    return ret_val;
}
Example #14
0
/**
* Retrieve a new image of same dimensions of the original image
* where each original image's pixel is replaced by randomly picked
* neighbor in the provided local neighborhood window
*/
array getRandomNeighbor(const array &in, int windW, int windH)
{
    array rnd = 2.0f*randu(in.dims(0), in.dims(1)) - 1.0f;
    array sx = seq(in.dims(0));
    array sy = seq(in.dims(1));
    array vx = tile(sx, 1, in.dims(1)) + floor(rnd*windW);
    array vy = tile(sy.T(), in.dims(0), 1) + floor(rnd*windH);
    array vxx = clamp(vx, 0, in.dims(0));
    array vyy = clamp(vy, 0, in.dims(1));
    array in2 = moddims(in, vx.elements(), 3);
    return moddims(in2(vyy*in.dims(0) + vxx, span), in.dims());
}
Example #15
0
/**
* randomization - controls % of total number of pixels in the image
* that will be effected by random noise
* repeat - # of times the process is carried out on the previous steps output
*/
array hurl(const array &in, int randomization, int repeat)
{
    int w = in.dims(0);
    int h = in.dims(1);
    float f = randomization / 100.0f;
    int dim = (int)(f*w*h);
    array ret_val = in.copy();
    array temp = moddims(ret_val, w*h, 3);
    for (int i = 0; i<repeat; ++i) {
        array idxs = (w*h)  * randu(dim);
        array rndR = 255.0f * randu(dim);
        array rndG = 255.0f * randu(dim);
        array rndB = 255.0f * randu(dim);
        temp(idxs, 0) = rndR;
        temp(idxs, 1) = rndG;
        temp(idxs, 2) = rndB;
    }
    ret_val = moddims(temp, in.dims());
    return ret_val;
}
Example #16
0
array segment_volume(array A, int k) {
    array I1 = A(span, span, k);

    float mx = max<float>(I1);
    float mn = min<float>(I1);

    float u0 = 0.9 * mx;
    float s0 = (mx - mn) / 2;

    float u1 = 1.1 * mn;
    float s1 = (mx - mn) / 2;

    array L0  = gauss(I1, u0, s0);
    array L11 = gauss(I1, u1, s1);
    array L10;
    array L12;
    static array kernel = constant(1, 3, 3) / 9;
    static array L11_old;
    static array L12_old;

    if (k == 0) {
        L11 = convolve(L11, kernel);
        L10 = L11;
    } else {
        L10 = L11_old;
        L11 = L12_old;
    }

    if (k < A.dims(2) - 1) {
        L12 = gauss(A(span, span, k + 1), u1, s1);
        L12 = convolve(L12, kernel);
    } else {
        L12 = L11;
    }

    L11_old = L11;
    L12_old = L12;

    array L1 = (L10 + L11 + L12) / 3;
    array S  = (L0 > L1);
    return S.as(A.type());
}
Example #17
0
 array anyTrue(const array &in, const int dim)
 {
     af_array out = 0;
     AF_THROW(af_any_true(&out, in.get(), getFNSD(dim, in.dims())));
     return array(out);
 }
Example #18
0
array var(const array& in, const array weights, dim_type dim)
{
    af_array temp = 0;
    AF_THROW(af_var_weighted(&temp, in.get(), weights.get(), getFNSD(dim, in.dims())));
    return array(temp);
}
Example #19
0
array var(const array& in, bool isbiased, dim_type dim)
{
    af_array temp = 0;
    AF_THROW(af_var(&temp, in.get(), isbiased, getFNSD(dim, in.dims())));
    return array(temp);
}
Example #20
0
array resize(const array &in, const float scale, const interpType method)
{
    af_array out = 0;
    AF_THROW(af_resize(&out, in.get(), in.dims(0) * scale, in.dims(1) * scale, method));
    return array(out);
}
Example #21
0
 inline auto total_size(array const& a) { return calc_total_size(a.dims()); }
Example #22
0
AFAPI array median(const array& in, const dim_t dim)
{
    af_array temp = 0;
    AF_THROW(af_median(&temp, in.get(), getFNSD(dim, in.dims())));
    return array(temp);
}
Example #23
0
 array count(const array &in, const int dim)
 {
     af_array out = 0;
     AF_THROW(af_count(&out, in.get(), getFNSD(dim, in.dims())));
     return array(out);
 }
Example #24
0
void Window::surface(const array& S, const char* const title) {
    af::array xVals = range(S.dims(0));
    af::array yVals = range(S.dims(1));
    af_cell temp{_r, _c, title, AF_COLORMAP_DEFAULT};
    AF_THROW(af_draw_surface(get(), xVals.get(), yVals.get(), S.get(), &temp));
}
/**
* x,y - starting position of zoom
* width, height - dimensions of the rectangle to where we have to zoom in
* */
array digZoom(const array &in, int x, int y, int width, int height)
{
    array cropped = in(seq(x, width - 1), seq(y, height - 1), span);
    return resize(cropped, (unsigned)in.dims(0), (unsigned)in.dims(1));
}