///按指定大小输出为位图块. // @param bitfield以int为单位的位图数组, 每个元素表示1个piece, 为0表示空, 为1表示满. // @param piece_size指定的piece大小. inline void range_to_bitfield(bitfield& bf, int piece_size) { // 先整理连续的空间, 将连续的区间合并为一个区间. if (m_need_merge) merge(); #ifndef AVHTTP_DISABLE_THREAD boost::mutex::scoped_lock lock(*m_mutex); #endif // 计算出分片总数. int piece_num = (m_size / piece_size) + (m_size % piece_size == 0 ? 0 : 1); // 分配位图空间, 默认为0. bf.resize(piece_num, 0); boost::int64_t l = 0; boost::int64_t r = 0; range_map::iterator it = m_ranges.begin(); range_map::iterator end = m_ranges.end(); // 从0位置开始, 每次检查piece_size大小的空间是否数据完整, 数据 // 完整则设置到位图为1, 表示有数据. for (int i = 0; i < piece_num; i++) { l = i * piece_size; r = (i + 1) * piece_size; r = r > m_size ? m_size : r; bool is_complete = false; if (it != end) { // 在已经下载的区间中. if (l >= it->first && r <= it->second) { is_complete = true; } else { // 除非右边界大于等于当前区间的右边界, 否则一直使用当前区间判断. // 这样就避免了每次从头循环遍历. if (r >= it->second) { if (++it != end) { if (l >= it->first && r <= it->second) { is_complete = true; } } } } } if (is_complete) { bf.set_bit(i); } } }
void print_bitfield(bitfield const& b) { std::string out; for (int i = 0; i < b.size(); ++i) { out += b.get_bit(i) ? "1" : "0"; } std::printf("%s\n", out.c_str()); }
///按指定的分片大小bitfield更新rangefield. // @param bf为指定的bitfield. // @param piece_size是指定的分片大小. inline void bitfield_to_range(const bitfield& bf, int piece_size) { #ifndef AVHTTP_DISABLE_THREAD boost::mutex::scoped_lock lock(*m_mutex); #endif m_ranges.clear(); boost::int64_t left = 0; boost::int64_t right = 0; bool left_record = false; int index = 0; for (bitfield::const_iterator i = bf.begin(); i != bf.end(); i++, index++) { BOOST_ASSERT(index * piece_size < m_size); if (*i && !left_record) { left = index * piece_size; right = left + piece_size; left_record = true; continue; } if (*i && left_record) { right += piece_size; } if (left_record && !(*i)) { // 得到区间. right = (std::min)(right, m_size); m_ranges[left] = right; left_record = false; } } if (left_record) { right = (std::min)(right, m_size); m_ranges[left] = right; left_record = false; } m_need_merge = true; }
void peer_lost(bitfield const& bits, peer_connection const* peer) { if (has_picker()) { if (bits.all_set() && bits.size() > 0) m_picker->dec_refcount_all(peer); else m_picker->dec_refcount(bits, peer); } #ifdef TORRENT_DEBUG else { TORRENT_ASSERT(is_seed()); } #endif }
void QTorrentHandle::downloading_pieces(bitfield &bf) const { std::vector<partial_piece_info> queue; torrent_handle::get_download_queue(queue); for (std::vector<partial_piece_info>::const_iterator it=queue.begin(); it!= queue.end(); it++) { bf.set_bit(it->piece_index); } return; }
void print_bitfield(bitfield const& b) { std::string out; out.reserve(b.size()); for (bool bit : b) out += bit ? '1' : '0'; std::printf("%s\n", out.c_str()); }
void peer_lost(bitfield const& bits) { if (has_picker()) { if (bits.all_set()) m_picker->dec_refcount_all(); else m_picker->dec_refcount(bits); } #ifdef TORRENT_DEBUG else { TORRENT_ASSERT(is_seed()); } #endif }
void test_iterators(bitfield& test1) { test1.set_all(); int num = 0; std::printf("expecting %d ones\n", test1.size()); for (bitfield::const_iterator i = test1.begin(); i != test1.end(); ++i) { std::printf("%d", *i); TEST_EQUAL(*i, true); num += *i; } std::printf("\n"); TEST_EQUAL(num, test1.size()); TEST_EQUAL(num, test1.count()); }
bitfield(bitfield const& rhs) { assign(rhs.data(), rhs.size()); }