Example #1
0
void Hinge2Vehicle::resetForklift()
{
	gVehicleSteering = 0.f;
	gBreakingForce = defaultBreakingForce;
	gEngineForce = 0.f;

	m_carChassis->setCenterOfMassTransform(btTransform::getIdentity());
	m_carChassis->setLinearVelocity(btVector3(0,0,0));
	m_carChassis->setAngularVelocity(btVector3(0,0,0));
	m_dynamicsWorld->getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(m_carChassis->getBroadphaseHandle(),getDynamicsWorld()->getDispatcher());
#if 0
	if (m_vehicle)
	{
		m_vehicle->resetSuspension();
		for (int i=0;i<m_vehicle->getNumWheels();i++)
		{
			//synchronize the wheels with the (interpolated) chassis worldtransform
			m_vehicle->updateWheelTransform(i,true);
		}
	}
#endif
	btTransform liftTrans;
	liftTrans.setIdentity();
	liftTrans.setOrigin(m_liftStartPos);
	m_liftBody->activate();
	m_liftBody->setCenterOfMassTransform(liftTrans);
	m_liftBody->setLinearVelocity(btVector3(0,0,0));
	m_liftBody->setAngularVelocity(btVector3(0,0,0));

	btTransform forkTrans;
	forkTrans.setIdentity();
	forkTrans.setOrigin(m_forkStartPos);
	m_forkBody->activate();
	m_forkBody->setCenterOfMassTransform(forkTrans);
	m_forkBody->setLinearVelocity(btVector3(0,0,0));
	m_forkBody->setAngularVelocity(btVector3(0,0,0));

//	m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
	m_liftHinge->setLimit(0.0f, 0.0f);
	m_liftHinge->enableAngularMotor(false, 0, 0);

	
	m_forkSlider->setLowerLinLimit(0.1f);
	m_forkSlider->setUpperLinLimit(0.1f);
	m_forkSlider->setPoweredLinMotor(false);

	btTransform loadTrans;
	loadTrans.setIdentity();
	loadTrans.setOrigin(m_loadStartPos);
	m_loadBody->activate();
	m_loadBody->setCenterOfMassTransform(loadTrans);
	m_loadBody->setLinearVelocity(btVector3(0,0,0));
	m_loadBody->setAngularVelocity(btVector3(0,0,0));

}
Example #2
0
void Hinge2Vehicle::lockForkSlider(void)
{
	btScalar linDepth = m_forkSlider->getLinearPos();
	btScalar lowLim = m_forkSlider->getLowerLinLimit();
	btScalar hiLim = m_forkSlider->getUpperLinLimit();
	m_forkSlider->setPoweredLinMotor(false);
	if(linDepth <= lowLim)
	{
		m_forkSlider->setLowerLinLimit(lowLim);
		m_forkSlider->setUpperLinLimit(lowLim);
	}
	else if(linDepth > hiLim)
	{
		m_forkSlider->setLowerLinLimit(hiLim);
		m_forkSlider->setUpperLinLimit(hiLim);
	}
	else
	{
		m_forkSlider->setLowerLinLimit(linDepth);
		m_forkSlider->setUpperLinLimit(linDepth);
	}
	return;
} // Hinge2Vehicle::lockForkSlider()
Example #3
0
void Hinge2Vehicle::specialKeyboard(int key, int x, int y)
{
#if 0
	if (key==GLUT_KEY_END)
		return;

	//	printf("key = %i x=%i y=%i\n",key,x,y);

	int state;
	state=glutGetModifiers();
	if (state & GLUT_ACTIVE_SHIFT) 
	{
		switch (key) 
			{
			case GLUT_KEY_LEFT : 
				{
				
					m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
					m_liftHinge->enableAngularMotor(true, -0.1, maxMotorImpulse);
					break;
				}
			case GLUT_KEY_RIGHT : 
				{
					
					m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
					m_liftHinge->enableAngularMotor(true, 0.1, maxMotorImpulse);
					break;
				}
			case GLUT_KEY_UP :
				{
					m_forkSlider->setLowerLinLimit(0.1f);
					m_forkSlider->setUpperLinLimit(3.9f);
					m_forkSlider->setPoweredLinMotor(true);
					m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
					m_forkSlider->setTargetLinMotorVelocity(1.0);
					break;
				}
			case GLUT_KEY_DOWN :
				{
					m_forkSlider->setLowerLinLimit(0.1f);
					m_forkSlider->setUpperLinLimit(3.9f);
					m_forkSlider->setPoweredLinMotor(true);
					m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
					m_forkSlider->setTargetLinMotorVelocity(-1.0);
					break;
				}

			default:
				DemoApplication::specialKeyboard(key,x,y);
				break;
			}

	} else
	{
			switch (key) 
			{
			case GLUT_KEY_LEFT : 
				{
					gVehicleSteering += steeringIncrement;
					if (	gVehicleSteering > steeringClamp)
						gVehicleSteering = steeringClamp;

					break;
				}
			case GLUT_KEY_RIGHT : 
				{
					gVehicleSteering -= steeringIncrement;
					if (	gVehicleSteering < -steeringClamp)
						gVehicleSteering = -steeringClamp;

					break;
				}
			case GLUT_KEY_UP :
				{
					gEngineForce = maxEngineForce;
					gBreakingForce = 0.f;
					break;
				}
			case GLUT_KEY_DOWN :
				{
					gEngineForce = -maxEngineForce;
					gBreakingForce = 0.f;
					break;
				}

			case GLUT_KEY_F7:
				{
					btDiscreteDynamicsWorld* world = (btDiscreteDynamicsWorld*)m_dynamicsWorld;
					world->setLatencyMotionStateInterpolation(!world->getLatencyMotionStateInterpolation());
					printf("world latencyMotionStateInterpolation = %d\n", world->getLatencyMotionStateInterpolation());
					break;
				}
			case GLUT_KEY_F6:
				{
					//switch solver (needs demo restart)
					useMCLPSolver = !useMCLPSolver;
					printf("switching to useMLCPSolver = %d\n", useMCLPSolver);

					delete m_solver;
					if (useMCLPSolver)
					{
						btDantzigSolver* mlcp = new btDantzigSolver();
						//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
						btMLCPSolver* sol = new btMLCPSolver(mlcp);
						m_solver = sol;
					} else
					{
						m_solver = new btSequentialImpulseConstraintSolver();
					}

					m_dynamicsWorld->setConstraintSolver(m_solver);


					//exitPhysics();
					//initPhysics();
					break;
				}

			case GLUT_KEY_F5:
				m_useDefaultCamera = !m_useDefaultCamera;
				break;
			default:
				DemoApplication::specialKeyboard(key,x,y);
				break;
			}

	}
	//	glutPostRedisplay();

#endif
}
Example #4
0
bool	Hinge2Vehicle::keyboardCallback(int key, int state)
{
	bool handled = false;
	bool isShiftPressed = m_guiHelper->getAppInterface()->m_window->isModifierKeyPressed(B3G_SHIFT);

	if (state)
	{
	if (isShiftPressed) 
	{
		switch (key) 
			{
			case B3G_LEFT_ARROW : 
				{
				
					m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
					m_liftHinge->enableAngularMotor(true, -0.1, maxMotorImpulse);
					handled = true;
					break;
				}
			case B3G_RIGHT_ARROW : 
				{
					
					m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
					m_liftHinge->enableAngularMotor(true, 0.1, maxMotorImpulse);
					handled = true;
					break;
				}
			case B3G_UP_ARROW :
				{
					m_forkSlider->setLowerLinLimit(0.1f);
					m_forkSlider->setUpperLinLimit(3.9f);
					m_forkSlider->setPoweredLinMotor(true);
					m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
					m_forkSlider->setTargetLinMotorVelocity(1.0);
					handled = true;
					break;
				}
			case B3G_DOWN_ARROW :
				{
					m_forkSlider->setLowerLinLimit(0.1f);
					m_forkSlider->setUpperLinLimit(3.9f);
					m_forkSlider->setPoweredLinMotor(true);
					m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
					m_forkSlider->setTargetLinMotorVelocity(-1.0);
					handled = true;
					break;
				}
			}

	} else
	{
			switch (key) 
			{
			case B3G_LEFT_ARROW : 
				{
					handled = true;
					gVehicleSteering += steeringIncrement;
					if (	gVehicleSteering > steeringClamp)
						gVehicleSteering = steeringClamp;

					break;
				}
			case B3G_RIGHT_ARROW : 
				{
					handled = true;
					gVehicleSteering -= steeringIncrement;
					if (	gVehicleSteering < -steeringClamp)
						gVehicleSteering = -steeringClamp;

					break;
				}
			case B3G_UP_ARROW :
				{
					handled = true;
					gEngineForce = maxEngineForce;
					gBreakingForce = 0.f;
					break;
				}
			case B3G_DOWN_ARROW :
				{
					handled = true;
					gEngineForce = -maxEngineForce;
					gBreakingForce = 0.f;
					break;
				}

			case B3G_F7:
				{
					handled = true;
					btDiscreteDynamicsWorld* world = (btDiscreteDynamicsWorld*)m_dynamicsWorld;
					world->setLatencyMotionStateInterpolation(!world->getLatencyMotionStateInterpolation());
					printf("world latencyMotionStateInterpolation = %d\n", world->getLatencyMotionStateInterpolation());
					break;
				}
			case B3G_F6:
				{
					handled = true;
					//switch solver (needs demo restart)
					useMCLPSolver = !useMCLPSolver;
					printf("switching to useMLCPSolver = %d\n", useMCLPSolver);

					delete m_solver;
					if (useMCLPSolver)
					{
						btDantzigSolver* mlcp = new btDantzigSolver();
						//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
						btMLCPSolver* sol = new btMLCPSolver(mlcp);
						m_solver = sol;
					} else
					{
						m_solver = new btSequentialImpulseConstraintSolver();
					}

					m_dynamicsWorld->setConstraintSolver(m_solver);


					//exitPhysics();
					//initPhysics();
					break;
				}

			case B3G_F5:
			handled = true;
				m_useDefaultCamera = !m_useDefaultCamera;
				break;
			default:
				break;
			}
	}

	} else
	{
		switch (key) 
		{
		case B3G_UP_ARROW:
			{
				lockForkSlider();
				gEngineForce = 0.f;
				gBreakingForce = defaultBreakingForce; 
				handled=true;
			break;
			}
		case B3G_DOWN_ARROW:
			{
				lockForkSlider();
				gEngineForce = 0.f;
				gBreakingForce = defaultBreakingForce;
				handled=true;
			break;
			}
		case B3G_LEFT_ARROW:
		case B3G_RIGHT_ARROW:
			{
				lockLiftHinge();
				handled=true;
				break;
			}
		default:
			
			break;
		}
	}
	return handled;
}