void transfer(cyclic_buffer<capacity>& buf, Out& out) { if (!buf.isEmpty()) { char buffer[TRANSFER_CHUNK_SIZE]; size_t s = buf.seek(buffer, sizeof(buffer)); size_t numWritten = out.write(buffer, s); buf.skip(numWritten); } }
void transfer(In& in, cyclic_buffer<capacity>& buf) { if (!buf.isFull()) { size_t availSpace = std::min(buf.availableSpace(), TRANSFER_CHUNK_SIZE); char buffer[TRANSFER_CHUNK_SIZE]; size_t numRead = in.read(buffer, availSpace); buf.write(buffer, numRead); } }
bool transferLeft(cyclic_buffer<capacity>& buf, In& in, Out& out) { if (!buf.isEmpty()) { transfer(buf, out); } else { try { // read() throws exception if nothing can be read transfer(in, buf); // Or doesn't throw returning 0? return buf.isEmpty(); } catch (const errno_exception& ex) { return true; } } }
/** * Trigger shape is defined in a way which is convenient for trigger shape definition * On the other hand, trigger decoder indexing begins from synchronization event. * * This function finds the index of synchronization event within trigger_shape_s */ uint32_t findTriggerZeroEventIndex(trigger_shape_s * shape, trigger_config_s const*triggerConfig) { TriggerState state; errorDetection.clear(); TriggerStimulatorHelper helper; uint32_t index = doFindTrigger(&helper, shape, triggerConfig, &state); if (index == EFI_ERROR_CODE) { return index; } efiAssert(state.getTotalRevolutionCounter() == 1, "totalRevolutionCounter", EFI_ERROR_CODE); /** * Now that we have just located the synch point, we can simulate the whole cycle * in order to calculate expected duty cycle */ state.cycleCallback = onFindIndex; for (uint32_t i = index + 1; i <= index + 2 * shape->getSize(); i++) { helper.nextStep(&state, shape, i, triggerConfig); } efiAssert(state.getTotalRevolutionCounter() > 1, "totalRevolutionCounter2", EFI_ERROR_CODE); for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { shape->dutyCycle[i] = 1.0 * state.expectedTotalTime[i] / HELPER_PERIOD; } return index % shape->getSize(); }
/** * @return TRUE is something is wrong with trigger decoding */ bool_t isTriggerDecoderError(void) { return errorDetection.sum(6) > 4; }
/** * @brief Trigger decoding happens here * This method changes the state of trigger_state_s data structure according to the trigger event */ void TriggerState::decodeTriggerEvent(trigger_event_e const signal, efitime_t nowNt DECLARE_ENGINE_PARAMETER_S) { efiAssertVoid(signal <= SHAFT_3RD_UP, "unexpected signal"); trigger_wheel_e triggerWheel = eventIndex[signal]; if (!engineConfiguration->useOnlyFrontForTrigger && curSignal == prevSignal) { orderingErrorCounter++; } prevSignal = curSignal; curSignal = signal; eventCount[triggerWheel]++; eventCountExt[signal]++; efitime_t currentDurationLong = getCurrentGapDuration(nowNt); /** * For performance reasons, we want to work with 32 bit values. If there has been more then * 10 seconds since previous trigger event we do not really care. */ currentDuration = currentDurationLong > 10 * US2NT(US_PER_SECOND_LL) ? 10 * US2NT(US_PER_SECOND_LL) : currentDurationLong; if (isLessImportant(signal)) { #if EFI_UNIT_TEST if (printTriggerDebug) { printf("%s isLessImportant %s\r\n", getTrigger_type_e(engineConfiguration->trigger.type), getTrigger_event_e(signal)); } #endif /** * For less important events we simply increment the index. */ nextTriggerEvent() ; if (TRIGGER_SHAPE(gapBothDirections)) { toothed_previous_duration = currentDuration; isFirstEvent = false; toothed_previous_time = nowNt; } return; } isFirstEvent = false; // todo: skip a number of signal from the beginning #if EFI_PROD_CODE // scheduleMsg(&logger, "from %f to %f %d %d", triggerConfig->syncRatioFrom, triggerConfig->syncRatioTo, currentDuration, shaftPositionState->toothed_previous_duration); // scheduleMsg(&logger, "ratio %f", 1.0 * currentDuration/ shaftPositionState->toothed_previous_duration); #else if (toothed_previous_duration != 0) { // printf("ratio %f: cur=%d pref=%d\r\n", 1.0 * currentDuration / shaftPositionState->toothed_previous_duration, // currentDuration, shaftPositionState->toothed_previous_duration); } #endif bool_t isSynchronizationPoint; if (TRIGGER_SHAPE(isSynchronizationNeeded)) { isSynchronizationPoint = currentDuration > toothed_previous_duration * TRIGGER_SHAPE(syncRatioFrom) && currentDuration < toothed_previous_duration * TRIGGER_SHAPE(syncRatioTo); #if EFI_PROD_CODE if (engineConfiguration->isPrintTriggerSynchDetails) { #else if (printTriggerDebug) { #endif /* EFI_PROD_CODE */ float gap = 1.0 * currentDuration / toothed_previous_duration; #if EFI_PROD_CODE scheduleMsg(logger, "gap=%f @ %d", gap, current_index); #else actualSynchGap = gap; print("current gap %f\r\n", gap); #endif /* EFI_PROD_CODE */ } } else { /** * in case of noise the counter could be above the expected number of events */ int d = engineConfiguration->useOnlyFrontForTrigger ? 2 : 1; isSynchronizationPoint = !shaft_is_synchronized || (current_index >= TRIGGER_SHAPE(size) - d); } #if EFI_UNIT_TEST if (printTriggerDebug) { printf("%s isSynchronizationPoint=%d index=%d %s\r\n", getTrigger_type_e(engineConfiguration->trigger.type), isSynchronizationPoint, current_index, getTrigger_event_e(signal)); } #endif if (isSynchronizationPoint) { /** * We can check if things are fine by comparing the number of events in a cycle with the expected number of event. */ bool isDecodingError = eventCount[0] != TRIGGER_SHAPE(expectedEventCount[0]) || eventCount[1] != TRIGGER_SHAPE(expectedEventCount[1]) || eventCount[2] != TRIGGER_SHAPE(expectedEventCount[2]); triggerDecoderErrorPin.setValue(isDecodingError); if (isDecodingError) { lastDecodingErrorTime = getTimeNowNt(); totalTriggerErrorCounter++; if (engineConfiguration->isPrintTriggerSynchDetails) { #if EFI_PROD_CODE scheduleMsg(logger, "error: synchronizationPoint @ index %d expected %d/%d/%d got %d/%d/%d", current_index, TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2]), eventCount[0], eventCount[1], eventCount[2]); #endif /* EFI_PROD_CODE */ } } errorDetection.add(isDecodingError); if (isTriggerDecoderError()) { warning(OBD_PCM_Processor_Fault, "trigger decoding issue. expected %d/%d/%d got %d/%d/%d", TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2]), eventCount[0], eventCount[1], eventCount[2]); } shaft_is_synchronized = true; // this call would update duty cycle values nextTriggerEvent() ; nextRevolution(); } else { nextTriggerEvent() ; } toothed_previous_duration = currentDuration; toothed_previous_time = nowNt; } float getEngineCycle(operation_mode_e operationMode) { return operationMode == TWO_STROKE ? 360 : 720; } void addSkippedToothTriggerEvents(trigger_wheel_e wheel, TriggerShape *s, int totalTeethCount, int skippedCount, float toothWidth, float offset, float engineCycle, float filterLeft, float filterRight) { efiAssertVoid(totalTeethCount > 0, "total count"); efiAssertVoid(skippedCount >= 0, "skipped count"); for (int i = 0; i < totalTeethCount - skippedCount - 1; i++) { float angleDown = engineCycle / totalTeethCount * (i + (1 - toothWidth)); float angleUp = engineCycle / totalTeethCount * (i + 1); s->addEvent(offset + angleDown, wheel, TV_HIGH, filterLeft, filterRight); s->addEvent(offset + angleUp, wheel, TV_LOW, filterLeft, filterRight); } float angleDown = engineCycle / totalTeethCount * (totalTeethCount - skippedCount - 1 + (1 - toothWidth) ); s->addEvent(offset + angleDown, wheel, TV_HIGH, filterLeft, filterRight); s->addEvent(offset + engineCycle, wheel, TV_LOW, filterLeft, filterRight); }
static ALWAYS_INLINE void handleSparkEvent(uint32_t eventIndex, IgnitionEvent *iEvent, int rpm DECLARE_ENGINE_PARAMETER_S) { float dwellMs = engine->engineState.sparkDwell; if (cisnan(dwellMs) || dwellMs < 0) { firmwareError("invalid dwell: %f at %d", dwellMs, rpm); return; } floatus_t chargeDelayUs = engine->rpmCalculator.oneDegreeUs * iEvent->dwellPosition.angleOffset; int isIgnitionError = chargeDelayUs < 0; ignitionErrorDetection.add(isIgnitionError); if (isIgnitionError) { #if EFI_PROD_CODE scheduleMsg(logger, "Negative spark delay=%f", chargeDelayUs); #endif chargeDelayUs = 0; return; } if (cisnan(dwellMs)) { firmwareError("NaN in scheduleOutput", dwellMs); return; } /** * We are alternating two event lists in order to avoid a potential issue around revolution boundary * when an event is scheduled within the next revolution. */ scheduling_s * sUp = &iEvent->signalTimerUp; scheduling_s * sDown = &iEvent->signalTimerDown; /** * The start of charge is always within the current trigger event range, so just plain time-based scheduling */ scheduleTask("spark up", sUp, chargeDelayUs, (schfunc_t) &turnPinHigh, iEvent->output); /** * Spark event is often happening during a later trigger event timeframe * TODO: improve precision */ findTriggerPosition(&iEvent->sparkPosition, iEvent->advance PASS_ENGINE_PARAMETER); if (iEvent->sparkPosition.eventIndex == eventIndex) { /** * Spark should be fired before the next trigger event - time-based delay is best precision possible */ float timeTillIgnitionUs = engine->rpmCalculator.oneDegreeUs * iEvent->sparkPosition.angleOffset; scheduleTask("spark 1down", sDown, (int) timeTillIgnitionUs, (schfunc_t) &turnPinLow, iEvent->output); } else { /** * Spark should be scheduled in relation to some future trigger event, this way we get better firing precision */ bool isPending = assertNotInList<IgnitionEvent>(iHead, iEvent); if (isPending) return; LL_APPEND(iHead, iEvent); } }
/** * @brief Trigger decoding happens here * This method changes the state of trigger_state_s data structure according to the trigger event */ void TriggerState::decodeTriggerEvent(trigger_shape_s const*triggerShape, trigger_config_s const*triggerConfig, trigger_event_e const signal, uint64_t nowUs) { efiAssertVoid(signal <= SHAFT_3RD_UP, "unexpected signal"); trigger_wheel_e triggerWheel = eventIndex[signal]; eventCount[triggerWheel]++; int isLessImportant = (triggerShape->useRiseEdge && signal != SHAFT_PRIMARY_UP) || (!triggerShape->useRiseEdge && signal != SHAFT_PRIMARY_DOWN); if (isLessImportant) { /** * For less important events we simply increment the index. */ nextTriggerEvent(triggerWheel, nowUs); return; } int64_t currentDuration = isFirstEvent ? 0 : nowUs - toothed_previous_time; isFirstEvent = false; efiAssertVoid(currentDuration >= 0, "decode: negative duration?"); // todo: skip a number of signal from the beginning #if EFI_PROD_CODE // scheduleMsg(&logger, "from %f to %f %d %d", triggerConfig->syncRatioFrom, triggerConfig->syncRatioTo, currentDuration, shaftPositionState->toothed_previous_duration); // scheduleMsg(&logger, "ratio %f", 1.0 * currentDuration/ shaftPositionState->toothed_previous_duration); #else if (toothed_previous_duration != 0) { // printf("ratio %f: cur=%d pref=%d\r\n", 1.0 * currentDuration / shaftPositionState->toothed_previous_duration, // currentDuration, shaftPositionState->toothed_previous_duration); } #endif if (noSynchronizationResetNeeded(this, triggerShape) || isSynchronizationGap(this, triggerShape, currentDuration)) { /** * We can check if things are fine by comparing the number of events in a cycle with the expected number of event. */ bool isDecodingError = eventCount[0] != triggerShape->expectedEventCount[0] || eventCount[1] != triggerShape->expectedEventCount[1] || eventCount[2] != triggerShape->expectedEventCount[2]; errorDetection.add(isDecodingError); if (isTriggerDecoderError()) { warning(OBD_PCM_Processor_Fault, "trigger decoding issue. expected %d/%d/%d got %d/%d/%d", triggerShape->expectedEventCount[0], triggerShape->expectedEventCount[1], triggerShape->expectedEventCount[2], eventCount[0], eventCount[1], eventCount[2]); } shaft_is_synchronized = true; // this call would update duty cycle values nextTriggerEvent(triggerWheel, nowUs); nextRevolution(triggerShape->shaftPositionEventCount, nowUs); } else { nextTriggerEvent(triggerWheel, nowUs); } toothed_previous_duration = currentDuration; toothed_previous_time = nowUs; }
/** * @brief Trigger decoding happens here * This method is invoked every time we have a fall or rise on one of the trigger sensors. * This method changes the state of trigger_state_s data structure according to the trigger event * @param signal type of event which just happened * @param nowNt current time */ void TriggerState::decodeTriggerEvent(trigger_event_e const signal, efitime_t nowNt DECLARE_ENGINE_PARAMETER_S) { efiAssertVoid(signal <= SHAFT_3RD_UP, "unexpected signal"); trigger_wheel_e triggerWheel = eventIndex[signal]; if (!engineConfiguration->useOnlyFrontForTrigger && curSignal == prevSignal) { orderingErrorCounter++; } prevSignal = curSignal; curSignal = signal; currentCycle.eventCount[triggerWheel]++; efitime_t currentDurationLong = getCurrentGapDuration(nowNt); /** * For performance reasons, we want to work with 32 bit values. If there has been more then * 10 seconds since previous trigger event we do not really care. */ currentDuration = currentDurationLong > 10 * US2NT(US_PER_SECOND_LL) ? 10 * US2NT(US_PER_SECOND_LL) : currentDurationLong; bool isPrimary = triggerWheel == T_PRIMARY; if (isLessImportant(signal)) { #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("%s isLessImportant %s %d\r\n", getTrigger_type_e(engineConfiguration->trigger.type), getTrigger_event_e(signal), nowNt); } #endif /** * For less important events we simply increment the index. */ nextTriggerEvent() ; if (TRIGGER_SHAPE(gapBothDirections) && considerEventForGap()) { isFirstEvent = false; thirdPreviousDuration = durationBeforePrevious; durationBeforePrevious = toothed_previous_duration; toothed_previous_duration = currentDuration; toothed_previous_time = nowNt; } } else { #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("%s event %s %d\r\n", getTrigger_type_e(engineConfiguration->trigger.type), getTrigger_event_e(signal), nowNt); } #endif isFirstEvent = false; // todo: skip a number of signal from the beginning #if EFI_PROD_CODE || defined(__DOXYGEN__) // scheduleMsg(&logger, "from %f to %f %d %d", triggerConfig->syncRatioFrom, triggerConfig->syncRatioTo, currentDuration, shaftPositionState->toothed_previous_duration); // scheduleMsg(&logger, "ratio %f", 1.0 * currentDuration/ shaftPositionState->toothed_previous_duration); #else if (toothed_previous_duration != 0) { // printf("ratio %f: cur=%d pref=%d\r\n", 1.0 * currentDuration / shaftPositionState->toothed_previous_duration, // currentDuration, shaftPositionState->toothed_previous_duration); } #endif bool isSynchronizationPoint; if (TRIGGER_SHAPE(isSynchronizationNeeded)) { /** * Here I prefer to have two multiplications instead of one division, that's a micro-optimization */ isSynchronizationPoint = currentDuration > toothed_previous_duration * TRIGGER_SHAPE(syncRatioFrom) && currentDuration < toothed_previous_duration * TRIGGER_SHAPE(syncRatioTo) && toothed_previous_duration > durationBeforePrevious * TRIGGER_SHAPE(secondSyncRatioFrom) && toothed_previous_duration < durationBeforePrevious * TRIGGER_SHAPE(secondSyncRatioTo) // this is getting a little out of hand, any ideas? && durationBeforePrevious > thirdPreviousDuration * TRIGGER_SHAPE(thirdSyncRatioFrom) && durationBeforePrevious < thirdPreviousDuration * TRIGGER_SHAPE(thirdSyncRatioTo) ; #if EFI_PROD_CODE || defined(__DOXYGEN__) if (engineConfiguration->isPrintTriggerSynchDetails || someSortOfTriggerError) { #else if (printTriggerDebug) { #endif /* EFI_PROD_CODE */ float gap = 1.0 * currentDuration / toothed_previous_duration; float prevGap = 1.0 * toothed_previous_duration / durationBeforePrevious; float gap3 = 1.0 * durationBeforePrevious / thirdPreviousDuration; #if EFI_PROD_CODE || defined(__DOXYGEN__) scheduleMsg(logger, "gap=%f/%f/%f @ %d while expected %f/%f and %f/%f error=%d", gap, prevGap, gap3, currentCycle.current_index, TRIGGER_SHAPE(syncRatioFrom), TRIGGER_SHAPE(syncRatioTo), TRIGGER_SHAPE(secondSyncRatioFrom), TRIGGER_SHAPE(secondSyncRatioTo), someSortOfTriggerError); #else actualSynchGap = gap; print("current gap %f/%f/%f c=%d prev=%d\r\n", gap, prevGap, gap3, currentDuration, toothed_previous_duration); #endif /* EFI_PROD_CODE */ } } else { /** * in case of noise the counter could be above the expected number of events */ int d = engineConfiguration->useOnlyFrontForTrigger ? 2 : 1; isSynchronizationPoint = !shaft_is_synchronized || (currentCycle.current_index >= TRIGGER_SHAPE(size) - d); } #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("%s isSynchronizationPoint=%d index=%d %s\r\n", getTrigger_type_e(engineConfiguration->trigger.type), isSynchronizationPoint, currentCycle.current_index, getTrigger_event_e(signal)); } #endif if (isSynchronizationPoint) { /** * We can check if things are fine by comparing the number of events in a cycle with the expected number of event. */ bool isDecodingError = currentCycle.eventCount[0] != TRIGGER_SHAPE(expectedEventCount[0]) || currentCycle.eventCount[1] != TRIGGER_SHAPE(expectedEventCount[1]) || currentCycle.eventCount[2] != TRIGGER_SHAPE(expectedEventCount[2]); triggerDecoderErrorPin.setValue(isDecodingError); if (isDecodingError) { lastDecodingErrorTime = getTimeNowNt(); someSortOfTriggerError = true; totalTriggerErrorCounter++; if (engineConfiguration->isPrintTriggerSynchDetails || someSortOfTriggerError) { #if EFI_PROD_CODE || defined(__DOXYGEN__) scheduleMsg(logger, "error: synchronizationPoint @ index %d expected %d/%d/%d got %d/%d/%d", currentCycle.current_index, TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2]), currentCycle.eventCount[0], currentCycle.eventCount[1], currentCycle.eventCount[2]); #endif /* EFI_PROD_CODE */ } } errorDetection.add(isDecodingError); if (isTriggerDecoderError()) { warning(OBD_PCM_Processor_Fault, "trigger decoding issue. expected %d/%d/%d got %d/%d/%d", TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2]), currentCycle.eventCount[0], currentCycle.eventCount[1], currentCycle.eventCount[2]); } shaft_is_synchronized = true; // this call would update duty cycle values nextTriggerEvent() ; nextRevolution(); } else { nextTriggerEvent() ; } thirdPreviousDuration = durationBeforePrevious; durationBeforePrevious = toothed_previous_duration; toothed_previous_duration = currentDuration; toothed_previous_time = nowNt; } if (!isValidIndex(PASS_ENGINE_PARAMETER_F)) { warning(OBD_PCM_Processor_Fault, "unexpected eventIndex=%d while size %d", currentCycle.current_index, TRIGGER_SHAPE(size)); lastDecodingErrorTime = getTimeNowNt(); someSortOfTriggerError = true; } if (someSortOfTriggerError) { if (getTimeNowNt() - lastDecodingErrorTime > US2NT(US_PER_SECOND_LL)) { someSortOfTriggerError = false; } } if (ENGINE(sensorChartMode) == SC_RPM_ACCEL || ENGINE(sensorChartMode) == SC_DETAILED_RPM) { angle_t currentAngle = TRIGGER_SHAPE(eventAngles[currentCycle.current_index]); // todo: make this '90' depend on cylinder count? angle_t prevAngle = currentAngle - 90; fixAngle(prevAngle); // todo: prevIndex should be pre-calculated int prevIndex = TRIGGER_SHAPE(triggerIndexByAngle[(int)prevAngle]); // now let's get precise angle for that event prevAngle = TRIGGER_SHAPE(eventAngles[prevIndex]); // todo: re-implement this as a subclass. we need two instances of // uint32_t time = nowNt - timeOfLastEvent[prevIndex]; angle_t angleDiff = currentAngle - prevAngle; // todo: angle diff should be pre-calculated fixAngle(angleDiff); // float r = (60000000.0 / 360 * US_TO_NT_MULTIPLIER) * angleDiff / time; #if EFI_SENSOR_CHART || defined(__DOXYGEN__) if (boardConfiguration->sensorChartMode == SC_DETAILED_RPM) { // scAddData(currentAngle, r); } else { // scAddData(currentAngle, r / instantRpmValue[prevIndex]); } #endif // instantRpmValue[currentCycle.current_index] = r; // timeOfLastEvent[currentCycle.current_index] = nowNt; } } angle_t getEngineCycle(operation_mode_e operationMode) { return operationMode == TWO_STROKE ? 360 : 720; } void addSkippedToothTriggerEvents(trigger_wheel_e wheel, TriggerShape *s, int totalTeethCount, int skippedCount, float toothWidth, float offset, float engineCycle, float filterLeft, float filterRight) { efiAssertVoid(totalTeethCount > 0, "total count"); efiAssertVoid(skippedCount >= 0, "skipped count"); for (int i = 0; i < totalTeethCount - skippedCount - 1; i++) { float angleDown = engineCycle / totalTeethCount * (i + (1 - toothWidth)); float angleUp = engineCycle / totalTeethCount * (i + 1); s->addEvent(offset + angleDown, wheel, TV_RISE, filterLeft, filterRight); s->addEvent(offset + angleUp, wheel, TV_FALL, filterLeft, filterRight); } float angleDown = engineCycle / totalTeethCount * (totalTeethCount - skippedCount - 1 + (1 - toothWidth)); s->addEvent(offset + angleDown, wheel, TV_RISE, filterLeft, filterRight); s->addEvent(offset + engineCycle, wheel, TV_FALL, filterLeft, filterRight); }