Example #1
0
/**
 * Description not yet available.
 * \param
 */
dvar_vector sfabs(const dvar_vector& t1)
  {
     RETURN_ARRAYS_INCREMENT();

     dvar_vector tmp(t1.indexmin(),t1.indexmax());

     for (int i=t1.indexmin(); i<=t1.indexmax(); i++)
     {
       tmp.elem(i)=sfabs(t1.elem(i));
     }
     RETURN_ARRAYS_DECREMENT();
     return(tmp);
  }
Example #2
0
/** Compute the dot product of two variable type vectors. The minimum and maxium
  legal subscripts of the arguments must agree; otherwize an error message
   is printed and execution terminates.
  \ingroup matop
  \param v1 A dvar_vector, \f$a\f$.
  \param v2 A dvar_vector, \f$b\f$.
  \return A dvariable, \f$z = a\cdot b = \sum_i a_i\cdot b_i\f$  containing
  the value of the dot product of the two arguments.
*/
dvariable operator*(const dvar_vector& v1, const dvar_vector& v2)
{
    RETURN_ARRAYS_INCREMENT();
    if (v1.indexmin()!=v2.indexmin()||v1.indexmax()!=v2.indexmax())
    {
        cerr << "Incompatible bounds in "
             "prevariable operator * (const dvar_vector& v1, const dvar_vector& v2)"
             << endl;
        ad_exit(1);
    }
    double tmp=0;

#ifndef USE_ASSEMBLER
    int mmin=v1.indexmin();
    int mmax=v1.indexmax();
#ifdef OPT_LIB
    double * pt1=&v1.elem_value(mmin);
    double * pt1m=&v1.elem_value(mmax);
    double * pt2=&v2.elem_value(mmin);
    do
    {
        tmp+= *pt1++ * *pt2++;
    }
    while (pt1<=pt1m);
#else
    for (int i=mmin; i<=mmax; i++)
    {
        tmp+=v1.elem_value(i)*v2.elem_value(i);
    }
#endif
#else
    int mmin=v1.indexmin();
    int n=v1.indexmax()-mmin+1;
    dp_dotproduct(&tmp,&(v1.elem_value(mmin)),&(v2.elem_value(mmin)),n);
#endif

    dvariable vtmp=nograd_assign(tmp);

    // The derivative list considerations
    save_identifier_string("bbbb");
    v1.save_dvar_vector_value();
    v1.save_dvar_vector_position();
    v2.save_dvar_vector_value();
    v2.save_dvar_vector_position();
    vtmp.save_prevariable_position();
    save_identifier_string("aaaa");
    gradient_structure::GRAD_STACK1->
    set_gradient_stack(dvdv_dot);
    RETURN_ARRAYS_DECREMENT();
    return vtmp;
}
Example #3
0
/**
 * Description not yet available.
 * \param
 */
dvar_vector operator-(const dvar_vector& t1, const double x)
  {
    RETURN_ARRAYS_INCREMENT();
    dvar_vector tmp(t1.indexmin(),t1.indexmax());
    save_identifier_string("ucbb");
    for (int i=t1.indexmin(); i<=t1.indexmax(); i++)
    {
      tmp.elem_value(i)=t1.elem_value(i)-x;
    }
    tmp.save_dvar_vector_position();
    t1.save_dvar_vector_position();
    save_identifier_string("dduu");
    RETURN_ARRAYS_DECREMENT();
    gradient_structure::GRAD_STACK1->set_gradient_stack(DF_dv_cdble_diff);
    return(tmp);
  }
Example #4
0
/**
 * Description not yet available.
 * \param
 */
dvar_vector operator+(const prevariable& x, const dvar_vector& t1)
  {
    RETURN_ARRAYS_INCREMENT();
    dvar_vector tmp(t1.indexmin(),t1.indexmax());
    save_identifier_string("wcbf");
    x.save_prevariable_position();
    for (int i=t1.indexmin(); i<=t1.indexmax(); i++)
    {
      tmp.elem_value(i)=t1.elem_value(i)+value(x);
    }
    tmp.save_dvar_vector_position();
    t1.save_dvar_vector_position();
    save_identifier_string("dduu");
    RETURN_ARRAYS_DECREMENT();
    gradient_structure::GRAD_STACK1->set_gradient_stack(DF_dble_dv_add);
    return(tmp);
  }
Example #5
0
dvar_vector posfun(const dvar_vector& x, const double& eps, dvariable& pen)
  {
    int i;
    dvar_vector xp(x.indexmin(),x.indexmax());
    for(i=x.indexmin();i<=x.indexmax();i++)
    {
        if(x(i)>=eps)
        {
            xp(i) = x(i);
        }
        else
        {
            pen += 0.01*square(x(i)-eps);
            xp(i) = eps/(2.-x(i)/eps);
        }
    }
    return(xp);
  }
Example #6
0
/**
 * Description not yet available.
 * \param
 */
dvar_vector inv_cumd_norm(const dvar_vector& x)
{
  int mmin=x.indexmin();
  int mmax=x.indexmax();
  dvar_vector tmp(mmin,mmax);
  for (int i=mmin;i<=mmax;i++)
  {
    tmp(i)=inv_cumd_norm(x(i));
  }
  return tmp;
}
Example #7
0
/**
 * Description not yet available.
 * \param
 */
dvar_vector posfun(const dvar_vector&x,double eps,const prevariable& _pen)
{
  int mmin=x.indexmin();
  int mmax=x.indexmax();
  dvar_vector tmp(mmin,mmax);
  for (int i=mmin;i<=mmax;i++)
  {
    tmp(i)=posfun(x(i),eps,_pen);
  }
  return tmp;
}
Example #8
0
void set_value_inv_mc(const dvar_vector& x, const dvector& _v, const int& _ii,
  const double fmin, const double fmax)
{
  dvector& v=(dvector&) _v;
  int& ii=(int&) _ii;
  int min=x.indexmin();
  int max=x.indexmax();
  for (int i=min;i<=max;i++)
  {
    v(ii++)=set_value_inv_mc(x(i),fmin,fmax);
  }
}
Example #9
0
dvariable robust_regression(dvector& obs, dvar_vector& pred, 
  const double& cutoff) 
{
  if (obs.indexmin() != pred.indexmin() || obs.indexmax() != pred.indexmax() )
  {
    cerr << "Index limits on observed vector are not equal to the Index\n\
 limits on the predicted vector in robust_reg_likelihood function\n";
  }
  RETURN_ARRAYS_INCREMENT(); //Need this statement because the function
			     //returns a variable type
  int min=obs.indexmin();
  int max=obs.indexmax();
  dvariable sigma_hat;
  dvariable sigma_tilde; 
  int nobs = max-min+1;
  double width=3.0;
  double pcon=0.05;
  double width2=width*width;
  dvariable zpen;
  zpen=0.0;
  double a,a2;
  a=cutoff; 
     // This bounds a between 0.05 and 1.75
  a2=a*a;
  dvariable tmp,tmp2,tmp4,sum_square,v_hat;
  dvar_vector diff_vec = obs-pred;
  tmp = norm(diff_vec);
  sum_square = tmp * tmp;
  v_hat = 1.e-80 + sum_square/nobs;
  sigma_hat=pow(v_hat,.5);
  sigma_tilde=a*sigma_hat;
  double b=2.*pcon/(width*sqrt(PI));
  dvariable log_likelihood;
  dvariable div1;
  dvariable div2,div4;
  div1 = 2*(a2*v_hat);
  div2 = width2*(a2*v_hat);
  div4 = div2*div2;
  log_likelihood = 0;
  for (int i=min; i<=max; i++)
  {
    tmp=diff_vec[i];
    tmp2=tmp*tmp;
    tmp4=tmp2*tmp2;
    log_likelihood -= log((1-pcon)*exp(-tmp2/div1)+b/(1.+tmp4/div4) );
  }
  log_likelihood += nobs*log(a2*v_hat)/2.;
  log_likelihood += zpen;
  RETURN_ARRAYS_DECREMENT(); // Need this to decrement the stack increment
			     // caused by RETURN_ARRAYS_INCREMENT();
  return(log_likelihood);  
}
Example #10
0
/**
 * Description not yet available.
 * \param
 */
void make_indvar_list(const dvar_vector& t)
{
  if (!gradient_structure::instances)
  {
    return;
  }
  if ((unsigned int)(t.indexmax()-t.indexmin()+1)
    > gradient_structure::MAX_NVAR_OFFSET)
  {
   if (ad_printf)
   {
     (*ad_printf)("Current maximum number of independent variables is %d\n",
        gradient_structure::MAX_NVAR_OFFSET);
     (*ad_printf)("  You need to increase the global variable "
     "MAX_NVAR_OFFSET to %d\n",t.indexmax()-t.indexmin()+1);
     (*ad_printf)("  This can be done by putting the line\n"
         "    gradient_structure::set_MAX_NVAR_OFFSET(%d);\n",
        t.indexmax()-t.indexmin()+1);
     (*ad_printf)("  before the declaration of the gradient_structure object.\n"
        " or the command line option -mno %d\n",
        t.indexmax()-t.indexmin()+1);
   }
   else
   {
     cerr << "Current maximum number of independent variables is "
          << gradient_structure::MAX_NVAR_OFFSET << "\n"
          <<  "  You need to increase the global variable MAX_NVAR_OFFSET to "
          << (t.indexmax()-t.indexmin()+1) << "\n"
          << "  This can be done by putting the line\n"
          << "    'gradient_structure::set_MAX_NVAR_OFFSET("
          << (t.indexmax()-t.indexmin()+1) << ");'\n"
          << "  before the declaration of the gradient_structure object.\n"
          << " or use the -mno 1149 command line option in AD Model Builder\n";
   }
   ad_exit(21);
  }

  for (int i=t.indexmin(); i<=t.indexmax(); i++)
  {
    unsigned int tmp = (unsigned int)(i - t.indexmin());
    gradient_structure::INDVAR_LIST->put_address(tmp,&(t.va[i].x));
  }
  gradient_structure::NVAR=t.indexmax()-t.indexmin()+1;
}
Example #11
0
/**
Allocate dvar_vector using indexes from v1.
*/
void dvar_vector::allocate(const dvar_vector& v1)
{
  allocate(v1.indexmin(), v1.indexmax());
}
Example #12
0
/**
Copy index and pointer to values from v.

\param vv a dvar_vector
*/
dvar_vector_position::dvar_vector_position(const dvar_vector& v)
{
  min=v.indexmin();
  max=v.indexmax();
  va=v.get_va();
}