Bytecodes::Code Bytecodes::code_at(methodOop method, int bci) { return code_at(method->bcp_from(bci), method); }
// --- build_repack_buffer --------------------------------------------------- // Build a IFrame structure to help ASM code repack the 1 compiled frame into // many interpreter (or C1) frames. Takes in the current thread and a vframe; // the vframe is pointing and the virtual Java frame needing to be repacked. // It takes in the callee (which this frame is busy trying to call in it's // inlined code), and an array of IFrames. It returns the updated IFrame // buffer filled in for this frame. void Deoptimization::build_repack_buffer( JavaThread *thread, frame fr, IFrame *buf, const DebugMap *dm, const DebugScope *ds, intptr_t *jexstk, objectRef *lckstk, bool is_deopt, bool is_c1, bool is_youngest) { assert( thread->_deopt_buffer->contains((char*)(buf+1)), "over-ran large deopt buffer?" ); int bci=ds->bci(); if(bci==InvocationEntryBci){ // We deoptimized while hanging in prologue code for a synchronized // method. We got the lock (after all, deopt happens after returning // from the blocking call). We want to begin execution in the // interpreter at BCI 0, and after taking the lock. // Also it is possilble to enter the deopt code through the br_s on method // entry before the first byte code. bci = 0; } const methodOop moop = ds->method().as_methodOop(); if( ds->caller() ) { // Do I have a caller? Am I mid-call? // Initialize the constant pool entry for caller-parameter size. It // might be the case that we inlined and compiled a callee, and are busy // calling it in the compiled code, and get deoptimized with that callee // in-progress AND we've never executed it in the interpreter - which // would have filled in the constant pool cache before making the call. // Fill it in now. const methodOop caller = ds->caller()->method().as_methodOop(); int index = Bytes::get_native_u2(caller->bcp_from(ds->caller()->bci())+1); ConstantPoolCacheEntry *cpe = caller->constants()->cache()->entry_at(index); // Since we are setting the constant pool entry here, and another thread // could be busy resolving here we have a race condition setting the // flags. Use a CAS to only set the flags if they are currently 0. intx *flags_adr = (intx*)((intptr_t)cpe + in_bytes(ConstantPoolCacheEntry::flags_offset())); if( !*flags_adr ) { // Flags currently 0? // Set the flags, because the interpreter-return-entry points need some // info from them. Not all fields are set, because it's too complex to // do it here... and not needed. The cpCacheEntry is left "unresolved" // such that the next real use of it from the interpreter will be forced // to do a proper resolve, which will fill in the missing fields. // Compute new flags needed by the interpreter-return-entry intx flags = (moop->size_of_parameters() & 0xFF) | (1 << ConstantPoolCacheEntry::hotSwapBit) | (moop->result_type() << ConstantPoolCacheEntry::tosBits); // CAS 'em in, but only if there is currently a 0 flags assert0( sizeof(jlong)==sizeof(intx) ); Atomic::cmpxchg((jlong)flags, (jlong*)flags_adr, 0); // We don't care about the result, because the cache is monomorphic. // Either our CAS succeeded and jammed the right parameter count, or // another thread succeeded and jammed in the right parameter count. } } if (TraceDeoptimization) { BufferedLoggerMark m(NOTAG, Log::M_DEOPT, TraceDeoptimization, true); m.out("DEOPT REPACK c%d: ", is_c1 ? 1 : 2); moop->print_short_name(m.stream()); m.out(" @ bci %d %s", bci, ds->caller() ? "called by...": " (oldest frame)" ); } // If there was a suitable C1 frame, use it. // Otherwise, use an interpreter frame. if( 1 ) { // Build an interpreter-style IFrame. Naked oops abound. assert0( !objectRef(moop).is_stack() ); buf->_mref = objectRef(moop); buf->_cpc = moop->constants()->cacheRef(); // Compute monitor list length. If we have coarsened a lock we will end // up unlocking it and the repack buffer will not need to see it. uint mons_len = ds->numlocks(); if( ds->is_extra_lock() ) { mons_len--; assert0( mons_len >= 0 ); } assert0( mons_len < (256*sizeof(buf->_numlck)) ); buf->_numlck = mons_len; // Set up the return pc for the next frame: the next frame is a younger // frame which will return to this older frame. All middle frames return // back into the interpreter, just after a call with proper TOS state. // Youngest frames always start in vtos state because the uncommon-trap // blob sets them up that way. const address bcp = moop->bcp_from(bci); Bytecodes::Code c = Bytecodes::java_code(Bytecodes::cast(*bcp)); BasicType return_type=T_VOID; bool handle_popframe = is_youngest && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution(); int bci_bump = 0; if( !is_youngest ) { // Middle-frame? bool from_call = (c == Bytecodes::_invokevirtual || c==Bytecodes::_invokespecial|| c==Bytecodes::_invokestatic|| c == Bytecodes::_invokeinterface ); assert(from_call,"Middle frame is in the middle of a call"); bci_bump = Bytecodes::length_at(bcp); // But need to know how much it will be bumped for the return address buf->_bci = bci; // Save bci without bumping it; normal interpreter call returns bump the bci as needed buf[-1]._retadr = Interpreter::return_entry(vtos, bci_bump); } else if( thread->pending_exception() ) { // Deopt-with-pending. Throw up on return to interpreter, which is // handled by unpack_and_go. buf->_bci=bci; buf[-1]._retadr = Interpreter::unpack_and_go(); } else if( !is_deopt ) { // It is a C2-style uncommon-trap. // Do NOT increment the BCP! We are re-executing the current bytecode. buf->_bci=bci; buf[-1]._retadr = Interpreter::unpack_and_go(); } else { // It is a plain deopt // It is a deopt without exception. See if we are C1 in mid-patch. // If so, we always need to re-execute the bytecode. bool is_C1_mid_patch = false; if( is_c1 ) { // C1 codeblob? address caller_pc=fr.pc(); if(NativeCall::is_call_before(caller_pc)){ address target = nativeCall_at(caller_pc)->destination(); is_C1_mid_patch = target == Runtime1::entry_for(Runtime1::load_klass_patching_id); } } if( is_C1_mid_patch ) { Untested(""); // Do NOT increment the BCP! We are re-executing the current bytecode. } else if( ds->bci() == InvocationEntryBci ) { // It is deopt while hanging on a method-entry lock. // Do not advance BCP, as we have not executed bci 0 yet. } else { // Else C2 or C1-not-mid-patch // It is a deopt. Whether we re-execute the current bytecode or // assume it has completed depends on the bytecode. switch( c ) { case Bytecodes::_lookupswitch: case Bytecodes::_tableswitch: case Bytecodes::_fast_binaryswitch: case Bytecodes::_fast_linearswitch: // recompute condtional expression folded into _if<cond> case Bytecodes::_lcmp : case Bytecodes::_fcmpl : case Bytecodes::_fcmpg : case Bytecodes::_dcmpl : case Bytecodes::_dcmpg : case Bytecodes::_ifnull : case Bytecodes::_ifnonnull : case Bytecodes::_goto : case Bytecodes::_goto_w : case Bytecodes::_ifeq : case Bytecodes::_ifne : case Bytecodes::_iflt : case Bytecodes::_ifge : case Bytecodes::_ifgt : case Bytecodes::_ifle : case Bytecodes::_if_icmpeq : case Bytecodes::_if_icmpne : case Bytecodes::_if_icmplt : case Bytecodes::_if_icmpge : case Bytecodes::_if_icmpgt : case Bytecodes::_if_icmple : case Bytecodes::_if_acmpeq : case Bytecodes::_if_acmpne : // special cases case Bytecodes::_aastore: // We are re-executing the current bytecode. Untested(""); break; // special cases case Bytecodes::_putstatic: case Bytecodes::_getstatic: case Bytecodes::_getfield: case Bytecodes::_putfield: // We are re-executing the current bytecode. break; case Bytecodes::_athrow : break; // Must be deopt-w-exception case Bytecodes::_invokevirtual: case Bytecodes::_invokespecial: case Bytecodes::_invokestatic:{ methodHandle mh(thread,moop); return_type=Bytecode_invoke_at(mh,bci)->result_type(thread); if( !handle_popframe && !ds->should_reexecute()) bci_bump = 3; // Increment the BCP to post-call!!! See below! break; } case Bytecodes::_invokeinterface:{ methodHandle mh(thread,moop); return_type=Bytecode_invoke_at(mh,bci)->result_type(thread); if( !handle_popframe && !ds->should_reexecute()) bci_bump = 5; // Increment the BCP to post-call!!! See below! break; } case Bytecodes::_ldc : Untested(""); return_type=constant_pool_type(moop,*(bcp+1)); if( !ds->should_reexecute()) bci_bump = 2; // Increment the BCP to post-call!!! See below! break; case Bytecodes::_ldc_w : // fall through case Bytecodes::_ldc2_w: return_type=constant_pool_type(moop,Bytes::get_Java_u2(bcp+1)); if( !ds->should_reexecute()) bci_bump = 3; // Increment the BCP to post-call!!! See below! break; default: return_type=Bytecodes::result_type(c); if( !ds->should_reexecute()) bci_bump = Bytecodes::length_at(bcp); // Increment the BCP to post-call!!! See below! break; } if (ds->should_reexecute()) return_type = T_VOID; } // Save (possibly advanced) bci buf->_bci = bci+bci_bump; buf[-1]._retadr = Interpreter::unpack_and_go(); // Interpreter::return_entry(vtos, bci_bump); } // --- // Now all the Java locals. // First set the start of locals for the interpreter frame we are building. buf->_loc = (intptr_t)jexstk; uint loc_len = moop->max_locals(); for(uint i=0;i<loc_len;i++){ *jexstk++ = dm->get_value(ds->get_local(i),fr); } // Now that the locals have been unpacked if we have any deferred local writes // added by jvmti then we can free up that structure as the data is now in the // buffer GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals(); if( list ) { // Because of inlining we could have multiple vframes for a single frame // and several of the vframes could have deferred writes. Find them all. Unimplemented(); } // --- // Now all the Java Expressions uint expr_len = ds->numstk(); for(uint i=0;i<expr_len;i++) *jexstk++ = dm->get_value(ds->get_expr(i),fr); // If returning from a deoptimized call, we will have return values in // registers that need to end up on the Java execution stack. They are // not recorded in the debug info, since they did not exist at the time // the call began. if( is_youngest && is_deopt ) { if( type2size[return_type] > 0 ) { if( type2size[return_type]==2 ) { *jexstk++ = (intptr_t)frame::double_slot_primitive_type_empty_slot_id << 32; } *jexstk++ = pd_fetch_return_values( thread, return_type ); // Need to adjust the final jexstk_top for the youngest frame // returning values. These returned values are not accounted for in // the standard debug info. thread->_jexstk_top = jexstk; } } // JVMTI PopFrame support // Add the number of words of popframe preserved args to expr_len int popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size()); int popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words()); if (handle_popframe) { Unimplemented(); expr_len += popframe_preserved_args_size_in_words; // An interpreted frame was popped but it returns to a deoptimized // frame. The incoming arguments to the interpreted activation // were preserved in thread-local storage by the // remove_activation_preserving_args_entry in the interpreter; now // we put them back into the just-unpacked interpreter frame. // Note that this assumes that the locals arena grows toward lower // addresses. } // Set the JEX stk top buf->_stk = (intptr_t)jexstk; // --- // Now move locked objects to the interpreters lock-stack. // No need to inflate anything, as we're moving standard oops. int numlcks = ds->numlocks(); if( ds->is_extra_lock() ) { // coarsened a lock Untested(""); // The last lock is "coarsened" - kept locked when it should have been // unlocked and relocked. With no deopt, keeping it locked saves the 2 // sets of back-to-back CAS's and fences. However, here we need to // unlock it to match the proper Java state. ObjectSynchronizer::unlock(ALWAYS_POISON_OBJECTREF((objectRef)dm->get_value(ds->get_lock(numlcks-1),fr)).as_oop()); numlcks--; } for(int i=0;i<numlcks;i++){ *lckstk++ = ALWAYS_POISON_OBJECTREF((objectRef)dm->get_value(ds->get_lock(i),fr)); } } else { // Make a C1 frame Unimplemented(); } }