void InterfaceElem1d :: drawScalar(oofegGraphicContext &context)
{
    int i, indx, result = 0;
    GaussPoint *gp;
    IntegrationRule *iRule = integrationRulesArray [ giveDefaultIntegrationRule() ];
    TimeStep *tStep = this->giveDomain()->giveEngngModel()->giveCurrentStep();
    FloatArray gcoord(3), v1;
    WCRec p [ 1 ];
    IntArray map;
    GraphicObj *go;
    double val [ 1 ];

    if ( !context.testElementGraphicActivity(this) ) {
        return;
    }

    if ( context.getInternalVarsDefGeoFlag() ) {
        double defScale = context.getDefScale();
        p [ 0 ].x = ( FPNum ) 0.5 * ( this->giveNode(1)->giveUpdatedCoordinate(1, tStep, EID_MomentumBalance, defScale) +
                                     this->giveNode(2)->giveUpdatedCoordinate(1, tStep, EID_MomentumBalance, defScale) );
        p [ 0 ].y = ( FPNum ) 0.5 * ( this->giveNode(1)->giveUpdatedCoordinate(2, tStep, EID_MomentumBalance, defScale) +
                                     this->giveNode(2)->giveUpdatedCoordinate(2, tStep, EID_MomentumBalance, defScale) );
        p [ 0 ].z = ( FPNum ) 0.5 * ( this->giveNode(1)->giveUpdatedCoordinate(3, tStep, EID_MomentumBalance, defScale) +
                                     this->giveNode(2)->giveUpdatedCoordinate(3, tStep, EID_MomentumBalance, defScale) );
    } else {
        p [ 0 ].x = ( FPNum )( this->giveNode(1)->giveCoordinate(1) );
        p [ 0 ].y = ( FPNum )( this->giveNode(1)->giveCoordinate(2) );
        p [ 0 ].z = ( FPNum )( this->giveNode(1)->giveCoordinate(3) );
    }

    result += giveIPValue(v1, iRule->getIntegrationPoint(0), context.giveIntVarType(), tStep);


    for ( i = 0; i < iRule->getNumberOfIntegrationPoints(); i++ ) {
        result = 0;
        gp  = iRule->getIntegrationPoint(i);
        result += giveIPValue(v1, gp, context.giveIntVarType(), tStep);
        result += this->giveIntVarCompFullIndx( map, context.giveIntVarType() );
        if ( result != 2 ) {
            continue;
        }

        if ( ( indx = map.at( context.giveIntVarIndx() ) ) == 0 ) {
            return;
        }

        val [ 0 ] = v1.at(indx);
        context.updateFringeTableMinMax(val, 1);

        EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER);
        EASValsSetMType(FILLED_CIRCLE_MARKER);
        go = CreateMarkerWD3D(p, val [ 0 ]);
        EGWithMaskChangeAttributes(LAYER_MASK | FILL_MASK | MTYPE_MASK, go);
        EMAddGraphicsToModel(ESIModel(), go);
        //}
    }
}
Example #2
0
void LSpace :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep)
{
    int i, indx, result = 0;
    WCRec p [ 8 ];
    GraphicObj *tr;
    FloatArray v [ 8 ];
    double s [ 8 ], defScale = 0.0;

    if ( !gc.testElementGraphicActivity(this) ) {
        return;
    }

    if ( gc.giveIntVarMode() == ISM_recovered ) {
        for ( i = 1; i <= 8; i++ ) {
            result += this->giveInternalStateAtNode(v [ i - 1 ], gc.giveIntVarType(), gc.giveIntVarMode(), i, tStep);
        }

        if ( result != 8 ) {
            return;
        }
    } else if ( gc.giveIntVarMode() == ISM_local ) {
        return;
    }

    indx = gc.giveIntVarIndx();

    for ( i = 1; i <= 8; i++ ) {
        s [ i - 1 ] = v [ i - 1 ].at(indx);
    }

    EASValsSetEdgeColor( gc.getElementEdgeColor() );
    EASValsSetEdgeFlag(true);
    EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER);
    if ( gc.getScalarAlgo() == SA_ISO_SURF ) {
        for ( i = 0; i < 8; i++ ) {
            if ( gc.getInternalVarsDefGeoFlag() ) {
                // use deformed geometry
                defScale = gc.getDefScale();
                p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
                p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale);
                p [ i ].z = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(3, tStep, defScale);
            } else {
                p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
                p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2);
                p [ i ].z = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(3);
            }
        }

        gc.updateFringeTableMinMax(s, 8);
        tr = CreateHexahedronWD(p, s);
        EGWithMaskChangeAttributes(LAYER_MASK | EDGE_COLOR_MASK | EDGE_FLAG_MASK, tr);
        EMAddGraphicsToModel(ESIModel(), tr);
    }
}
Example #3
0
void IntElPoint :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep)
{
    int indx, result = 0;
    IntegrationRule *iRule = this->giveDefaultIntegrationRulePtr();
    FloatArray gcoord(3), v1;
    WCRec p [ 1 ];
    GraphicObj *go;
    double val [ 1 ];

    if ( !gc.testElementGraphicActivity(this) ) {
        return;
    }

    if ( gc.getInternalVarsDefGeoFlag() ) {
        double defScale = gc.getDefScale();
        p [ 0 ].x = ( FPNum ) 0.5 * ( this->giveNode(1)->giveUpdatedCoordinate(1, tStep, defScale) +
                                     this->giveNode(2)->giveUpdatedCoordinate(1, tStep, defScale) );
        p [ 0 ].y = ( FPNum ) 0.5 * ( this->giveNode(1)->giveUpdatedCoordinate(2, tStep, defScale) +
                                     this->giveNode(2)->giveUpdatedCoordinate(2, tStep, defScale) );
        p [ 0 ].z = ( FPNum ) 0.5 * ( this->giveNode(1)->giveUpdatedCoordinate(3, tStep,  defScale) +
                                     this->giveNode(2)->giveUpdatedCoordinate(3, tStep, defScale) );
    } else {
        p [ 0 ].x = ( FPNum ) ( this->giveNode(1)->giveCoordinate(1) );
        p [ 0 ].y = ( FPNum ) ( this->giveNode(1)->giveCoordinate(2) );
        p [ 0 ].z = ( FPNum ) ( this->giveNode(1)->giveCoordinate(3) );
    }

    result += giveIPValue(v1, iRule->getIntegrationPoint(0), gc.giveIntVarType(), tStep);


    for ( GaussPoint *gp: *iRule ) {
        result = 0;
        result += giveIPValue(v1, gp, gc.giveIntVarType(), tStep);
        if ( result != 1 ) {
            continue;
        }

        indx = gc.giveIntVarIndx();

        val [ 0 ] = v1.at(indx);
        gc.updateFringeTableMinMax(val, 1);

        EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER);
        EASValsSetMType(FILLED_CIRCLE_MARKER);
        go = CreateMarkerWD3D(p, val [ 0 ]);
        EGWithMaskChangeAttributes(LAYER_MASK | FILL_MASK | MTYPE_MASK, go);
        EMAddGraphicsToModel(ESIModel(), go);
        //}
    }
}
Example #4
0
void
TR_SHELL02 :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep)
{
    int i, indx, result = 0;
    WCRec p [ 3 ];
    GraphicObj *tr;
    FloatArray v1, v2, v3;
    double s [ 3 ], defScale;
    if ( !gc.testElementGraphicActivity(this) ) {
        return;
    }

    if ( !this->giveMaterial()->isActivated(tStep) ) {
        return;
    }

    if ( gc.giveIntVarMode() == ISM_recovered ) {
        result += this->giveInternalStateAtNode(v1, gc.giveIntVarType(), gc.giveIntVarMode(), 1, tStep);
        result += this->giveInternalStateAtNode(v2, gc.giveIntVarType(), gc.giveIntVarMode(), 2, tStep);
        result += this->giveInternalStateAtNode(v3, gc.giveIntVarType(), gc.giveIntVarMode(), 3, tStep);
    } else if ( gc.giveIntVarMode() == ISM_local ) {
        double tot_w = 0.;
        FloatArray a, v;
        for ( GaussPoint *gp: *plate->giveDefaultIntegrationRulePtr() ) {
            this->giveIPValue(a, gp, IST_ShellMomentumTensor, tStep);
            v.add(gp->giveWeight(), a);
            tot_w += gp->giveWeight();
        }
        v.times(1. / tot_w);
        v1 = v;
        v2 = v;
        v3 = v;
    }

    indx = gc.giveIntVarIndx();

    s [ 0 ] = v1.at(indx);
    s [ 1 ] = v2.at(indx);
    s [ 2 ] = v3.at(indx);
    EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER);
    if ( gc.getScalarAlgo() == SA_ISO_SURF ) {
        for ( i = 0; i < 3; i++ ) {
            if ( gc.getInternalVarsDefGeoFlag() ) {
                // use deformed geometry
                defScale = gc.getDefScale();
                p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
                p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale);
                p [ i ].z = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(3, tStep, defScale);
            } else {
                p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
                p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2);
                p [ i ].z = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(3);
            }
        }
        //     //EASValsSetColor(gc.getYieldPlotColor(ratio));
        gc.updateFringeTableMinMax(s, 3);
        tr =  CreateTriangleWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ]);
        EGWithMaskChangeAttributes(LAYER_MASK, tr);
        EMAddGraphicsToModel(ESIModel(), tr);
    }
}
Example #5
0
void
CohesiveSurface3d :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep)
{
    if ( !gc.testElementGraphicActivity(this) ) {
        return;
    }

    FloatArray val;
    GaussPoint *gp = integrationRulesArray [ 0 ]->getIntegrationPoint(0);
    if ( !giveIPValue(val, gp, gc.giveIntVarType(), tStep) ) {
        return;
    }

    int indx = gc.giveIntVarIndx();

    double s [ 8 ];
    for ( int i = 0; i < 8; i++ ) {
        s [ i ] = val.at(indx);
    }

    gc.updateFringeTableMinMax(s, 1);

    WCRec p [ 8 ];
    Particle *nodeA = ( Particle * ) giveNode(1);
    Particle *nodeB = ( Particle * ) giveNode(2);
    if ( gc.getInternalVarsDefGeoFlag() ) {
        // use deformed geometry
        double defScale = gc.getDefScale();
        p [ 0 ].x = nodeA->giveUpdatedCoordinate(1, tStep, defScale);
        p [ 0 ].y = nodeA->giveUpdatedCoordinate(2, tStep, defScale);
        p [ 0 ].z = nodeA->giveUpdatedCoordinate(3, tStep, defScale);
        p [ 2 ].x = nodeB->giveUpdatedCoordinate(1, tStep, defScale);
        p [ 2 ].y = nodeB->giveUpdatedCoordinate(2, tStep, defScale);
        p [ 2 ].z = nodeB->giveUpdatedCoordinate(3, tStep, defScale);
        // handle special elements crossing the boundary of the periodic cell
        if ( giveNumberOfNodes() == 3 ) {
            Node *nodeC = ( Particle * ) giveNode(3);
            p [ 2 ].x += kxa + kxa * defScale * ( nodeC->giveDofWithID(D_u)->giveUnknown(VM_Total, tStep) ) + kyb * defScale * ( nodeC->giveDofWithID(R_u)->giveUnknown(VM_Total, tStep) );
            p [ 2 ].y += kyb + kyb * defScale * ( nodeC->giveDofWithID(D_v)->giveUnknown(VM_Total, tStep) ) + kzc * defScale * ( nodeC->giveDofWithID(R_v)->giveUnknown(VM_Total, tStep) );
            p [ 2 ].z += kzc + kzc * defScale * ( nodeC->giveDofWithID(D_w)->giveUnknown(VM_Total, tStep) ) + kxa * defScale * ( nodeC->giveDofWithID(R_w)->giveUnknown(VM_Total, tStep) );
        }
    } else {
        // use initial geometry
        p [ 0 ].x = nodeA->giveCoordinate(1);
        p [ 0 ].y = nodeA->giveCoordinate(2);
        p [ 0 ].z = nodeA->giveCoordinate(3);
        p [ 2 ].x = nodeB->giveCoordinate(1);
        p [ 2 ].y = nodeB->giveCoordinate(2);
        p [ 2 ].z = nodeB->giveCoordinate(3);
        // handle special elements crossing the boundary of the periodic cell
        if ( giveNumberOfNodes() == 3 ) {
            p [ 2 ].x += kxa;
            p [ 2 ].y += kyb;
            p [ 2 ].z += kzc;
        }
    }


    double r1 = nodeA->giveRadius();
    double r2 = nodeB->giveRadius();
    double d = 0.1 * ( r1 + r2 );
    p [ 1 ].x = 0.5 * ( p [ 0 ].x + p [ 2 ].x - d * lcs.at(2, 1) - d * lcs.at(3, 1) );
    p [ 1 ].y = 0.5 * ( p [ 0 ].y + p [ 2 ].y - d * lcs.at(2, 2) - d * lcs.at(3, 2) );
    p [ 1 ].z = 0.5 * ( p [ 0 ].z + p [ 2 ].z - d * lcs.at(2, 3) - d * lcs.at(3, 3) );
    p [ 3 ].x = p [ 1 ].x + d *lcs.at(2, 1);
    p [ 3 ].y = p [ 1 ].y + d *lcs.at(2, 2);
    p [ 3 ].z = p [ 1 ].z + d *lcs.at(2, 3);

    for ( int i = 5; i < 8; i += 2 ) {
        p [ i ].x = p [ i - 4 ].x + d *lcs.at(3, 1);
        p [ i ].y = p [ i - 4 ].y + d *lcs.at(3, 2);
        p [ i ].z = p [ i - 4 ].z + d *lcs.at(3, 3);
    }

    p [ 4 ] = p [ 0 ];
    p [ 6 ] = p [ 2 ];

    GraphicObj *go = CreateHexahedronWD(p, s);

    EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER);
    EASValsSetLineWidth(2 * OOFEG_DEFORMED_GEOMETRY_WIDTH);
    EASValsSetFillStyle(FILL_SOLID);

    //EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, go);
    EGWithMaskChangeAttributes(WIDTH_MASK | FILL_MASK | LAYER_MASK, go);
    EMAddGraphicsToModel(ESIModel(), go);
}
Example #6
0
void L4Axisymm :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep)
{
    int i, indx, result = 0;
    WCRec p [ 4 ];
    GraphicObj *tr;
    FloatArray v [ 4 ];
    double s [ 4 ], defScale;

    if ( !gc.testElementGraphicActivity(this) ) {
        return;
    }

    EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER);
    if ( gc.giveIntVarMode() == ISM_recovered ) {
        for ( i = 1; i <= 4; i++ ) {
            result += this->giveInternalStateAtNode(v [ i - 1 ], gc.giveIntVarType(), gc.giveIntVarMode(), i, tStep);
        }

        if ( result != 4 ) {
            return;
        }

        indx = gc.giveIntVarIndx();

        for ( i = 1; i <= 4; i++ ) {
            s [ i - 1 ] = v [ i - 1 ].at(indx);
        }

        if ( gc.getScalarAlgo() == SA_ISO_SURF ) {
            for ( i = 0; i < 4; i++ ) {
                if ( gc.getInternalVarsDefGeoFlag() ) {
                    // use deformed geometry
                    defScale = gc.getDefScale();
                    p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
                    p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale);
                    p [ i ].z = 0.;
                } else {
                    p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
                    p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2);
                    p [ i ].z = 0.;
                }
            }

            //EASValsSetColor(gc.getYieldPlotColor(ratio));
            gc.updateFringeTableMinMax(s, 4);
            tr =  CreateQuadWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ], s [ 3 ]);
            EGWithMaskChangeAttributes(LAYER_MASK, tr);
            EMAddGraphicsToModel(ESIModel(), tr);

            /*
             * } else if (gc.getScalarAlgo() == SA_ISO_LINE) {
             *
             * EASValsSetColor(context.getActiveCrackColor());
             * EASValsSetLineWidth(OOFEG_ISO_LINE_WIDTH);
             *
             * for (i=0; i< 4; i++) {
             * if (gc.getInternalVarsDefGeoFlag()) {
             * // use deformed geometry
             * defScale = gc.getDefScale();
             * p[i].x = (FPNum) this->giveNode(i+1)->giveUpdatedCoordinate(1,tStep,defScale);
             * p[i].y = (FPNum) this->giveNode(i+1)->giveUpdatedCoordinate(2,tStep,defScale);
             * p[i].z = 0.;
             *
             * } else {
             * p[i].x = (FPNum) this->giveNode(i+1)->giveCoordinate(1);
             * p[i].y = (FPNum) this->giveNode(i+1)->giveCoordinate(2);
             * p[i].z = 0.;
             * }
             * }
             *
             * // isoline implementation
             * oofeg_drawIsoLinesOnQuad (p, s);
             *
             */
        }
    } else if ( gc.giveIntVarMode() == ISM_local ) {
        if ( numberOfGaussPoints != 4 ) {
            return;
        }

        IntArray ind(4);
        FloatArray *gpCoords;
        WCRec pp [ 9 ];

        for ( i = 0; i < 4; i++ ) {
            if ( gc.getInternalVarsDefGeoFlag() ) {
                // use deformed geometry
                defScale = gc.getDefScale();
                pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
                pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale);
                pp [ i ].z = 0.;
            } else {
                pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
                pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2);
                pp [ i ].z = 0.;
            }
        }

        for ( i = 0; i < 3; i++ ) {
            pp [ i + 4 ].x = 0.5 * ( pp [ i ].x + pp [ i + 1 ].x );
            pp [ i + 4 ].y = 0.5 * ( pp [ i ].y + pp [ i + 1 ].y );
            pp [ i + 4 ].z = 0.5 * ( pp [ i ].z + pp [ i + 1 ].z );
        }

        pp [ 7 ].x = 0.5 * ( pp [ 3 ].x + pp [ 0 ].x );
        pp [ 7 ].y = 0.5 * ( pp [ 3 ].y + pp [ 0 ].y );
        pp [ 7 ].z = 0.5 * ( pp [ 3 ].z + pp [ 0 ].z );

        pp [ 8 ].x = 0.25 * ( pp [ 0 ].x + pp [ 1 ].x + pp [ 2 ].x + pp [ 3 ].x );
        pp [ 8 ].y = 0.25 * ( pp [ 0 ].y + pp [ 1 ].y + pp [ 2 ].y + pp [ 3 ].y );
        pp [ 8 ].z = 0.25 * ( pp [ 0 ].z + pp [ 1 ].z + pp [ 2 ].z + pp [ 3 ].z );

        for ( GaussPoint *gp: *this->giveDefaultIntegrationRulePtr() ) {
            gpCoords = gp->giveNaturalCoordinates();
            if ( ( gpCoords->at(1) > 0. ) && ( gpCoords->at(2) > 0. ) ) {
                ind.at(1) = 0;
                ind.at(2) = 4;
                ind.at(3) = 8;
                ind.at(4) = 7;
            } else if ( ( gpCoords->at(1) < 0. ) && ( gpCoords->at(2) > 0. ) ) {
                ind.at(1) = 4;
                ind.at(2) = 1;
                ind.at(3) = 5;
                ind.at(4) = 8;
            } else if ( ( gpCoords->at(1) < 0. ) && ( gpCoords->at(2) < 0. ) ) {
                ind.at(1) = 5;
                ind.at(2) = 2;
                ind.at(3) = 6;
                ind.at(4) = 8;
            } else {
                ind.at(1) = 6;
                ind.at(2) = 3;
                ind.at(3) = 7;
                ind.at(4) = 8;
            }

            if ( giveIPValue(v [ 0 ], gp, gc.giveIntVarType(), tStep) == 0 ) {
                return;
            }

            indx = gc.giveIntVarIndx();

            for ( i = 1; i <= 4; i++ ) {
                s [ i - 1 ] = v [ 0 ].at(indx);
            }

            for ( i = 0; i < 4; i++ ) {
                p [ i ].x = pp [ ind.at(i + 1) ].x;
                p [ i ].y = pp [ ind.at(i + 1) ].y;
                p [ i ].z = pp [ ind.at(i + 1) ].z;
            }

            gc.updateFringeTableMinMax(s, 4);
            tr =  CreateQuadWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ], s [ 3 ]);
            EGWithMaskChangeAttributes(LAYER_MASK, tr);
            EMAddGraphicsToModel(ESIModel(), tr);
        }
    }
}
Example #7
0
void QTrPlaneStrain :: drawScalar(oofegGraphicContext &context)
{
    int t, n [ 3 ], i, indx, result = 0;
    WCRec p [ 3 ];
    GraphicObj *tr;
    TimeStep *tStep = this->giveDomain()->giveEngngModel()->giveCurrentStep();
    FloatArray v [ 6 ];
    double s [ 6 ], ss [ 3 ], defScale;
    IntArray map;

    if ( !context.testElementGraphicActivity(this) ) {
        return;
    }

    if ( context.giveIntVarMode() == ISM_recovered ) {
        for ( i = 1; i <= 6; i++ ) {
            result += this->giveInternalStateAtNode(v [ i - 1 ], context.giveIntVarType(), context.giveIntVarMode(), i, tStep);
        }
    } else if ( context.giveIntVarMode() == ISM_local ) {
        return;
    }

    if ( result != 6 ) {
        return;
    }

    result = this->giveIntVarCompFullIndx( map, context.giveIntVarType() );
    if ( ( !result ) || ( indx = map.at( context.giveIntVarIndx() ) ) == 0 ) {
        return;
    }

    for ( i = 1; i <= 6; i++ ) {
        s [ i - 1 ] = v [ i - 1 ].at(indx);
    }

    EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER);

    if ( context.getScalarAlgo() == SA_ISO_SURF ) {
        for ( t = 1; t <= 4; t++ ) {
            if ( t == 1 ) {
                n [ 0 ] = 1;
                n [ 1 ] = 4;
                n [ 2 ] = 6;
            } else if ( t == 2 ) {
                n [ 0 ] = 2;
                n [ 1 ] = 5;
                n [ 2 ] = 4;
            } else if ( t == 3 ) {
                n [ 0 ] = 3;
                n [ 1 ] = 6;
                n [ 2 ] = 5;
            } else {
                n [ 0 ] = 4;
                n [ 1 ] = 5;
                n [ 2 ] = 6;
            }


            for ( i = 0; i < 3; i++ ) {
                if ( context.getInternalVarsDefGeoFlag() ) {
                    // use deformed geometry
                    defScale = context.getDefScale();
                    p [ i ].x = ( FPNum ) this->giveNode(n [ i ])->giveUpdatedCoordinate(1, tStep, EID_MomentumBalance, defScale);
                    p [ i ].y = ( FPNum ) this->giveNode(n [ i ])->giveUpdatedCoordinate(2, tStep, EID_MomentumBalance, defScale);
                    p [ i ].z = 0.;
                } else {
                    p [ i ].x = ( FPNum ) this->giveNode(n [ i ])->giveCoordinate(1);
                    p [ i ].y = ( FPNum ) this->giveNode(n [ i ])->giveCoordinate(2);
                    p [ i ].z = 0.;
                }
            }

            //EASValsSetColor(gc.getYieldPlotColor(ratio));
            ss [ 0 ] = s [ n [ 0 ] - 1 ];
            ss [ 1 ] = s [ n [ 1 ] - 1 ];
            ss [ 2 ] = s [ n [ 2 ] - 1 ];
            context.updateFringeTableMinMax(ss, 3);
            tr =  CreateTriangleWD3D(p, ss [ 0 ], ss [ 1 ], ss [ 2 ]);
            EGWithMaskChangeAttributes(LAYER_MASK, tr);
            EMAddGraphicsToModel(ESIModel(), tr);
        }

        /* } else if (context.getScalarAlgo() == SA_ISO_LINE) {
         *
         * EASValsSetColor(context.getActiveCrackColor());
         * EASValsSetLineWidth(OOFEG_ISO_LINE_WIDTH);
         *
         * for (t=1; t<=4; t++) {
         * if (t==1) {n[0] = 1; n[1]=4; n[2]=6;}
         * else if (t==2) {n[0]=2; n[1]=5; n[2]=4;}
         * else if (t==3) {n[0]=3; n[1]=6; n[2]=5;}
         * else {n[0]=4; n[1]=5; n[2]=6;}
         *
         *
         * for (i=0; i< 3; i++) {
         * if (context.getInternalVarsDefGeoFlag()) {
         * // use deformed geometry
         * defScale = context.getDefScale();
         * p[i].x = (FPNum) this->giveNode(n[i])->giveUpdatedCoordinate(1,tStep,EID_MomentumBalance,defScale);
         * p[i].y = (FPNum) this->giveNode(n[i])->giveUpdatedCoordinate(2,tStep,EID_MomentumBalance,defScale);
         * p[i].z = 0.;
         *
         * } else {
         * p[i].x = (FPNum) this->giveNode(n[i])->giveCoordinate(1);
         * p[i].y = (FPNum) this->giveNode(n[i])->giveCoordinate(2);
         * p[i].z = 0.;
         * }
         * }
         * sv[0]=s[n[0]-1];
         * sv[1]=s[n[1]-1];
         * sv[2]=s[n[2]-1];
         *
         * // isoline implementation
         * oofeg_drawIsoLinesOnTriangle (p, sv);
         * } */
    }
}
Example #8
0
void Truss1d :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep)
{
    int i, indx, result = 0;
    WCRec p [ 2 ];
    GraphicObj *tr;
    FloatArray v1, v2;
    double s [ 2 ], defScale;

    if ( !gc.testElementGraphicActivity(this) ) {
        return;
    }

    if ( gc.giveIntVarMode() == ISM_recovered ) {
        result += this->giveInternalStateAtNode(v1, gc.giveIntVarType(), gc.giveIntVarMode(), 1, tStep);
        result += this->giveInternalStateAtNode(v2, gc.giveIntVarType(), gc.giveIntVarMode(), 2, tStep);
    } else if ( gc.giveIntVarMode() == ISM_local ) {
        GaussPoint *gp = integrationRulesArray [ 0 ]->getIntegrationPoint(0);
        result += giveIPValue(v1, gp, gc.giveIntVarType(), tStep);
        v2 = v1;
        result *= 2;
    }

    if ( result != 2 ) {
        return;
    }

    indx = gc.giveIntVarIndx();

    s [ 0 ] = v1.at(indx);
    s [ 1 ] = v2.at(indx);

    EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER);

    if ( ( gc.getScalarAlgo() == SA_ISO_SURF ) || ( gc.getScalarAlgo() == SA_ISO_LINE ) ) {
        for ( i = 0; i < 2; i++ ) {
            if ( gc.getInternalVarsDefGeoFlag() ) {
                // use deformed geometry
                defScale = gc.getDefScale();
                p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
                p [ i ].y = 0.;
                p [ i ].z = 0.;
            } else {
                p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
                p [ i ].y = 0.;
                p [ i ].z = 0.;
            }
        }

        //EASValsSetColor(gc.getYieldPlotColor(ratio));
        tr =  CreateLine3D(p);
        EGWithMaskChangeAttributes(LAYER_MASK, tr);
        EMAddGraphicsToModel(ESIModel(), tr);
    } else if ( ( gc.getScalarAlgo() == SA_ZPROFILE ) || ( gc.getScalarAlgo() == SA_COLORZPROFILE ) ) {
        double landScale = gc.getLandScale();

        for ( i = 0; i < 2; i++ ) {
            if ( gc.getInternalVarsDefGeoFlag() ) {
                // use deformed geometry
                defScale = gc.getDefScale();
                p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
                p [ i ].y = 0.0;
                p [ i ].z = s [ i ] * landScale;
            } else {
                p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
                p [ i ].y = 0.0;
                p [ i ].z = s [ i ] * landScale;
            }
        }

        if ( gc.getScalarAlgo() == SA_ZPROFILE ) {
            /*
             * EASValsSetColor(gc.getDeformedElementColor());
             * EASValsSetLineWidth(OOFEG_DEFORMED_GEOMETRY_WIDTH);
             * tr =  CreateLine3D(p);
             * EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, tr);
             */
            WCRec pp [ 4 ];
            pp [ 0 ].x = p [ 0 ].x;
            pp [ 0 ].y = 0.0;
            pp [ 0 ].z = 0.0;
            pp [ 1 ].x = p [ 0 ].x;
            pp [ 1 ].y = 0.0;
            pp [ 1 ].z = p [ 0 ].z;
            pp [ 2 ].x = p [ 1 ].x;
            pp [ 2 ].y = 0.0;
            pp [ 2 ].z = p [ 1 ].z;
            pp [ 3 ].x = p [ 1 ].x;
            pp [ 3 ].y = 0.0;
            pp [ 3 ].z = 0.0;
            tr = CreateQuad3D(pp);
            EASValsSetLineWidth(OOFEG_DEFORMED_GEOMETRY_WIDTH);
            EASValsSetColor( gc.getDeformedElementColor() );
            //EASValsSetLayer(OOFEG_DEFORMED_GEOMETRY_LAYER);
            EASValsSetFillStyle(FILL_HOLLOW);
            EGWithMaskChangeAttributes(WIDTH_MASK | FILL_MASK | COLOR_MASK | LAYER_MASK, tr);
            EMAddGraphicsToModel(ESIModel(), tr);
        } else {
            //tr =  CreateTriangleWD3D(p, s[0], s[1], s[2]);
            EASValsSetColor( gc.getDeformedElementColor() );
            tr =  CreateLine3D(p);
            EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, tr);
            EMAddGraphicsToModel(ESIModel(), tr);
        }
    }
}
void QPlaneStrain :: drawScalar(oofegGraphicContext &context)
{
    int i, indx;
    WCRec p [ 4 ];
    GraphicObj *tr;
    TimeStep *tStep = this->giveDomain()->giveEngngModel()->giveCurrentStep();
    FloatArray v [ 4 ];
    double s [ 4 ], defScale;

    if ( !context.testElementGraphicActivity(this) ) {
        return;
    }

    EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER);
    if ( context.giveIntVarMode() == ISM_recovered ) {
        // ============ plot the recovered values (smoothed data) ===============
        /*
         * for ( i = 1; i <= 4; i++ ) {
         *    result += this->giveInternalStateAtNode(v [ i - 1 ], context.giveIntVarType(), context.giveIntVarMode(), i, tStep);
         * }
         *
         * if ( result != 4 ) {
         *    return;
         * }
         *
         * indx = context.giveIntVarIndx();
         *
         * for ( i = 1; i <= 4; i++ ) {
         *    s [ i - 1 ] = v [ i - 1 ].at(indx);
         * }
         *
         * if ( context.getScalarAlgo() == SA_ISO_SURF ) {
         *    for ( i = 0; i < 4; i++ ) {
         *        if ( context.getInternalVarsDefGeoFlag() ) {
         *            // use deformed geometry
         *            defScale = context.getDefScale();
         *            p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
         *            p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale);
         *            p [ i ].z = 0.;
         *        } else {
         *            p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
         *            p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2);
         *            p [ i ].z = 0.;
         *        }
         *    }
         *
         *    //EASValsSetColor(gc.getYieldPlotColor(ratio));
         *    context.updateFringeTableMinMax(s, 4);
         *    tr =  CreateQuadWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ], s [ 3 ]);
         *    EGWithMaskChangeAttributes(LAYER_MASK, tr);
         *    EMAddGraphicsToModel(ESIModel(), tr);
         * } else if ( ( context.getScalarAlgo() == SA_ZPROFILE ) || ( context.getScalarAlgo() == SA_COLORZPROFILE ) ) {
         *    double landScale = context.getLandScale();
         *
         *    for ( i = 0; i < 4; i++ ) {
         *        if ( context.getInternalVarsDefGeoFlag() ) {
         *            // use deformed geometry
         *            defScale = context.getDefScale();
         *            p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
         *            p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale);
         *            p [ i ].z = s [ i ] * landScale;
         *        } else {
         *            p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
         *            p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2);
         *            p [ i ].z = s [ i ] * landScale;
         *        }
         *
         *        // this fixes a bug in ELIXIR
         *        if ( fabs(s [ i ]) < 1.0e-6 ) {
         *            s [ i ] = 1.0e-6;
         *        }
         *    }
         *
         *    if ( context.getScalarAlgo() == SA_ZPROFILE ) {
         *        EASValsSetColor( context.getDeformedElementColor() );
         *        EASValsSetLineWidth(OOFEG_DEFORMED_GEOMETRY_WIDTH);
         *        tr =  CreateQuad3D(p);
         *        EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, tr);
         *    } else {
         *        context.updateFringeTableMinMax(s, 4);
         *        tr =  CreateQuadWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ], s [ 3 ]);
         *        EGWithMaskChangeAttributes(LAYER_MASK, tr);
         *    }
         *
         *    EMAddGraphicsToModel(ESIModel(), tr);
         * }
         */
    } else if ( context.giveIntVarMode() == ISM_local ) {
        // ========== plot the local values (raw data) =====================
        if ( numberOfGaussPoints != 4 ) {
            return;
        }

        int ip;
        GaussPoint *gp;
        IntArray ind(4);
        FloatArray *gpCoords;
        WCRec pp [ 9 ];

        for ( i = 0; i < 8; i++ ) {
            if ( context.getInternalVarsDefGeoFlag() ) {
                // use deformed geometry
                defScale = context.getDefScale();
                pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
                pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale);
                pp [ i ].z = 0.;
            } else {
                pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
                pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2);
                pp [ i ].z = 0.;
            }
        }

        pp [ 8 ].x = 0.25 * ( pp [ 0 ].x + pp [ 1 ].x + pp [ 2 ].x + pp [ 3 ].x );
        pp [ 8 ].y = 0.25 * ( pp [ 0 ].y + pp [ 1 ].y + pp [ 2 ].y + pp [ 3 ].y );
        pp [ 8 ].z = 0.;

        for ( ip = 1; ip <= integrationRulesArray [ 0 ]->giveNumberOfIntegrationPoints(); ip++ ) {
            gp = integrationRulesArray [ 0 ]->getIntegrationPoint(ip - 1);
            gpCoords = gp->giveCoordinates();
            if ( ( gpCoords->at(1) > 0. ) && ( gpCoords->at(2) > 0. ) ) {
                ind.at(1) = 0;
                ind.at(2) = 4;
                ind.at(3) = 8;
                ind.at(4) = 7;
            } else if ( ( gpCoords->at(1) < 0. ) && ( gpCoords->at(2) > 0. ) ) {
                ind.at(1) = 4;
                ind.at(2) = 1;
                ind.at(3) = 5;
                ind.at(4) = 8;
            } else if ( ( gpCoords->at(1) < 0. ) && ( gpCoords->at(2) < 0. ) ) {
                ind.at(1) = 5;
                ind.at(2) = 2;
                ind.at(3) = 6;
                ind.at(4) = 8;
            } else {
                ind.at(1) = 6;
                ind.at(2) = 3;
                ind.at(3) = 7;
                ind.at(4) = 8;
            }

            if ( giveIPValue(v [ 0 ], gp, context.giveIntVarType(), tStep) == 0 ) {
                return;
            }

            indx = context.giveIntVarIndx();

            for ( i = 1; i <= 4; i++ ) {
                s [ i - 1 ] = v [ 0 ].at(indx);
            }

            for ( i = 0; i < 4; i++ ) {
                p [ i ].x = pp [ ind.at(i + 1) ].x;
                p [ i ].y = pp [ ind.at(i + 1) ].y;
                p [ i ].z = pp [ ind.at(i + 1) ].z;
            }

            context.updateFringeTableMinMax(s, 4);
            tr =  CreateQuadWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ], s [ 3 ]);
            EGWithMaskChangeAttributes(LAYER_MASK, tr);
            EMAddGraphicsToModel(ESIModel(), tr);
        }
    }
}
Example #10
0
void QPlaneStress2d :: drawScalar(oofegGraphicContext &context)
{
    int i, indx,  n [ 4 ], result = 0;
    WCRec p [ 4 ], pp [ 9 ];
    GraphicObj *tr;
    TimeStep *tStep = this->giveDomain()->giveEngngModel()->giveCurrentStep();
    FloatArray v [ 8 ];
    double s [ 9 ], ss [ 4 ], defScale;
    int ip;
    GaussPoint *gp;

    if ( !context.testElementGraphicActivity(this) ) {
        return;
    }

    EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER);
    if ( context.giveIntVarMode() == ISM_recovered ) {
        // ============ plot the recovered values (smoothed data) ===============
        for ( i = 1; i <= 8; i++ ) {
            result += this->giveInternalStateAtNode(v [ i - 1 ], context.giveIntVarType(), context.giveIntVarMode(), i, tStep);
        }

        if ( result != 8 ) {
            return;
        }

        indx = context.giveIntVarIndx();

        for ( i = 1; i <= 8; i++ ) {
            s [ i - 1 ] = v [ i - 1 ].at(indx);
        }

        // auxiliary value at an added central node
        // computed as average of the values at all Gauss points

        s [ 8 ] = 0.;
        for ( ip = 1; ip <= integrationRulesArray [ 0 ]->giveNumberOfIntegrationPoints(); ip++ ) {
            gp = integrationRulesArray [ 0 ]->getIntegrationPoint(ip - 1);
            if ( giveIPValue(v [ 0 ], gp, context.giveIntVarType(), tStep) == 0 ) {
                return;
            }

            s [ 8 ] +=  v [ 0 ].at(indx);
        }

        s [ 8 ] /= integrationRulesArray [ 0 ]->giveNumberOfIntegrationPoints();
        //s[8] = (s[4]+s[5]+s[6]+s[7])/4.;

        for ( i = 0; i < 8; i++ ) {
            if ( context.getInternalVarsDefGeoFlag() ) {
                // use deformed geometry
                defScale = context.getDefScale();
                pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
                pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale);
                pp [ i ].z = 0.;
            } else {
                // use initial geometry
                pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
                pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2);
                pp [ i ].z = 0.;
            }
        }

        pp [ 8 ].x = ( pp [ 4 ].x + pp [ 5 ].x + pp [ 6 ].x + pp [ 7 ].x ) / 4.;
        pp [ 8 ].y = ( pp [ 4 ].y + pp [ 5 ].y + pp [ 6 ].y + pp [ 7 ].y ) / 4.;
        pp [ 8 ].z = 0.;


        for ( int t = 1; t <= 4; t++ ) {
            if ( t == 1 ) {
                n [ 0 ] = 0;
                n [ 1 ] = 4;
                n [ 2 ] = 8;
                n [ 3 ] = 7;
            } else if ( t == 2 ) {
                n [ 0 ] = 4;
                n [ 1 ] = 1;
                n [ 2 ] = 5;
                n [ 3 ] = 8;
            } else if ( t == 3 ) {
                n [ 0 ] = 5;
                n [ 1 ] = 2;
                n [ 2 ] = 6;
                n [ 3 ] = 8;
            } else {
                n [ 0 ] = 6;
                n [ 1 ] = 3;
                n [ 2 ] = 7;
                n [ 3 ] = 8;
            }

            ss [ 0 ] = s [ n [ 0 ] ];
            ss [ 1 ] = s [ n [ 1 ] ];
            ss [ 2 ] = s [ n [ 2 ] ];
            ss [ 3 ] = s [ n [ 3 ] ];


            for ( i = 0; i < 4; i++ ) {
                p [ i ].x = pp [ n [ i ] ].x;
                p [ i ].y = pp [ n [ i ] ].y;
                p [ i ].z = 0.;
            }

            if ( context.getScalarAlgo() == SA_ISO_SURF ) {
                /*
                 * for ( i = 0; i < 4; i++ ) {
                 *    if ( context.getInternalVarsDefGeoFlag() ) {
                 *        // use deformed geometry
                 *        defScale = context.getDefScale();
                 *        p [ i ].x = ( FPNum ) this->giveNode(n[i] + 1)->giveUpdatedCoordinate(1, tStep, defScale);
                 *        p [ i ].y = ( FPNum ) this->giveNode(n[i] + 1)->giveUpdatedCoordinate(2, tStep, defScale);
                 *        p [ i ].z = 0.;
                 *    } else {
                 *        // use initial geometry
                 *        p [ i ].x = ( FPNum ) this->giveNode(n[i] + 1)->giveCoordinate(1);
                 *        p [ i ].y = ( FPNum ) this->giveNode(n[i] + 1)->giveCoordinate(2);
                 *        p [ i ].z = 0.;
                 *    }
                 * }
                 */
                //EASValsSetColor(gc.getYieldPlotColor(ratio));
                context.updateFringeTableMinMax(ss, 4);
                tr =  CreateQuadWD3D(p, ss [ 0 ], ss [ 1 ], ss [ 2 ], ss [ 3 ]);
                EGWithMaskChangeAttributes(LAYER_MASK, tr);
                EMAddGraphicsToModel(ESIModel(), tr);
            } else if ( ( context.getScalarAlgo() == SA_ZPROFILE ) || ( context.getScalarAlgo() == SA_COLORZPROFILE ) ) {
                //double landScale = context.getLandScale();

                for ( i = 0; i < 4; i++ ) {
                    /*
                     * if ( context.getInternalVarsDefGeoFlag() ) {
                     *    // use deformed geometry
                     *    defScale = context.getDefScale();
                     *    p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
                     *    p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale);
                     *    p [ i ].z = ss [ i ] * landScale;
                     * } else {
                     *    // use initial geometry
                     *    p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
                     *    p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2);
                     *    p [ i ].z = ss [ i ] * landScale;
                     * }
                     */

                    // this fixes a bug in ELIXIR
                    if ( fabs(ss [ i ]) < 1.0e-6 ) {
                        ss [ i ] = 1.0e-6;
                    }
                }

                if ( context.getScalarAlgo() == SA_ZPROFILE ) {
                    EASValsSetColor( context.getDeformedElementColor() );
                    EASValsSetLineWidth(OOFEG_DEFORMED_GEOMETRY_WIDTH);
                    tr =  CreateQuad3D(p);
                    EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, tr);
                } else {
                    context.updateFringeTableMinMax(s, 4);
                    tr =  CreateQuadWD3D(p, ss [ 0 ], ss [ 1 ], ss [ 2 ], ss [ 3 ]);
                    EGWithMaskChangeAttributes(LAYER_MASK, tr);
                }

                EMAddGraphicsToModel(ESIModel(), tr);
            }
        }
    } else if ( context.giveIntVarMode() == ISM_local ) {
        // ========== plot the local values (raw data) =====================
        if ( numberOfGaussPoints != 4 ) {
            return;
        }

        IntArray ind(4);
        FloatArray *gpCoords;
        WCRec pp [ 9 ];

        for ( i = 0; i < 8; i++ ) {
            if ( context.getInternalVarsDefGeoFlag() ) {
                // use deformed geometry
                defScale = context.getDefScale();
                pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
                pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale);
                pp [ i ].z = 0.;
            } else {
                pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
                pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2);
                pp [ i ].z = 0.;
            }
        }

        pp [ 8 ].x = 0.25 * ( pp [ 0 ].x + pp [ 1 ].x + pp [ 2 ].x + pp [ 3 ].x );
        pp [ 8 ].y = 0.25 * ( pp [ 0 ].y + pp [ 1 ].y + pp [ 2 ].y + pp [ 3 ].y );
        pp [ 8 ].z = 0.;

        for ( ip = 1; ip <= integrationRulesArray [ 0 ]->giveNumberOfIntegrationPoints(); ip++ ) {
            gp = integrationRulesArray [ 0 ]->getIntegrationPoint(ip - 1);
            gpCoords = gp->giveCoordinates();
            if ( ( gpCoords->at(1) > 0. ) && ( gpCoords->at(2) > 0. ) ) {
                ind.at(1) = 0;
                ind.at(2) = 4;
                ind.at(3) = 8;
                ind.at(4) = 7;
            } else if ( ( gpCoords->at(1) < 0. ) && ( gpCoords->at(2) > 0. ) ) {
                ind.at(1) = 4;
                ind.at(2) = 1;
                ind.at(3) = 5;
                ind.at(4) = 8;
            } else if ( ( gpCoords->at(1) < 0. ) && ( gpCoords->at(2) < 0. ) ) {
                ind.at(1) = 5;
                ind.at(2) = 2;
                ind.at(3) = 6;
                ind.at(4) = 8;
            } else {
                ind.at(1) = 6;
                ind.at(2) = 3;
                ind.at(3) = 7;
                ind.at(4) = 8;
            }

            if ( giveIPValue(v [ 0 ], gp, context.giveIntVarType(), tStep) == 0 ) {
                return;
            }

            indx = context.giveIntVarIndx();

            for ( i = 1; i <= 4; i++ ) {
                s [ i - 1 ] = v [ 0 ].at(indx);
            }

            for ( i = 0; i < 4; i++ ) {
                p [ i ].x = pp [ ind.at(i + 1) ].x;
                p [ i ].y = pp [ ind.at(i + 1) ].y;
                p [ i ].z = pp [ ind.at(i + 1) ].z;
            }

            context.updateFringeTableMinMax(s, 4);
            tr =  CreateQuadWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ], s [ 3 ]);
            EGWithMaskChangeAttributes(LAYER_MASK, tr);
            EMAddGraphicsToModel(ESIModel(), tr);
        }
    }
}
Example #11
0
void
LTRSpace :: drawSpecial(oofegGraphicContext &gc, TimeStep *tStep)
{
    int i, j, k;
    WCRec q [ 4 ];
    GraphicObj *tr;
    double defScale = gc.getDefScale();
    FloatArray crackStatuses, cf;

    if ( !gc.testElementGraphicActivity(this) ) {
        return;
    }

    if ( gc.giveIntVarType() == IST_CrackState ) {
        int crackStatus;
        double xc, yc, zc, length;
        FloatArray crackDir;

        if ( numberOfGaussPoints != 1 ) {
            return;
        }

        //   for (GaussPoint *gp: *integrationRulesArray [ 0 ] ) {
        {
            IntegrationRule *iRule = integrationRulesArray [ 0 ];
            GaussPoint *gp = iRule->getIntegrationPoint(0);
            if ( this->giveIPValue(cf, gp, IST_CrackedFlag, tStep) == 0 ) {
                return;
            }

            if ( ( int ) cf.at(1) == 0 ) {
                return;
            }

            //
            // obtain gp global coordinates - here only one exists
            // it is in centre of gravity.
            xc = yc = zc = 0.;
            for ( i = 0; i < 4; i++ ) {
                if ( gc.getInternalVarsDefGeoFlag() ) {
                    // use deformed geometry
                    xc += ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
                    yc += ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale);
                    zc += ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(3, tStep, defScale);
                } else {
                    xc += ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
                    yc += ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2);
                    zc += ( FPNum ) this->giveNode(i + 1)->giveCoordinate(3);
                }
            }

            xc = xc / 4.;
            yc = yc / 4.;
            zc = zc / 4.;
            length = TR_LENGHT_REDUCT * pow(this->computeVolumeAround(gp), 1. / 3.) / 2.0;
            if ( this->giveIPValue(crackDir, gp, IST_CrackDirs, tStep) ) {
                this->giveIPValue(crackStatuses, gp, IST_CrackStatuses, tStep);


                for ( i = 1; i <= 3; i++ ) {
                    crackStatus = ( int ) crackStatuses.at(i);
                    if ( ( crackStatus != pscm_NONE ) && ( crackStatus != pscm_CLOSED ) ) {
                        // draw a crack
                        // this element is 3d element

                        if ( i == 1 ) {
                            j = 2;
                            k = 3;
                        } else if ( i == 2 ) {
                            j = 3;
                            k = 1;
                        } else {
                            j = 1;
                            k = 2;
                        }

                        q [ 0 ].x = ( FPNum ) xc + 0.5 * crackDir.at(0 + j) * length + 0.5 * crackDir.at(0 + k) * length;
                        q [ 0 ].y = ( FPNum ) yc + 0.5 * crackDir.at(3 + j) * length + 0.5 * crackDir.at(3 + k) * length;
                        q [ 0 ].z = ( FPNum ) zc + 0.5 * crackDir.at(6 + j) * length + 0.5 * crackDir.at(6 + k) * length;
                        q [ 1 ].x = ( FPNum ) xc + 0.5 * crackDir.at(0 + j) * length - 0.5 * crackDir.at(0 + k) * length;
                        q [ 1 ].y = ( FPNum ) yc + 0.5 * crackDir.at(3 + j) * length - 0.5 * crackDir.at(3 + k) * length;
                        q [ 1 ].z = ( FPNum ) zc + 0.5 * crackDir.at(6 + j) * length - 0.5 * crackDir.at(6 + k) * length;
                        q [ 2 ].x = ( FPNum ) xc - 0.5 * crackDir.at(0 + j) * length - 0.5 * crackDir.at(0 + k) * length;
                        q [ 2 ].y = ( FPNum ) yc - 0.5 * crackDir.at(3 + j) * length - 0.5 * crackDir.at(3 + k) * length;
                        q [ 2 ].z = ( FPNum ) zc - 0.5 * crackDir.at(6 + j) * length - 0.5 * crackDir.at(6 + k) * length;
                        q [ 3 ].x = ( FPNum ) xc - 0.5 * crackDir.at(0 + j) * length + 0.5 * crackDir.at(0 + k) * length;
                        q [ 3 ].y = ( FPNum ) yc - 0.5 * crackDir.at(3 + j) * length + 0.5 * crackDir.at(3 + k) * length;
                        q [ 3 ].z = ( FPNum ) zc - 0.5 * crackDir.at(6 + j) * length + 0.5 * crackDir.at(6 + k) * length;

                        EASValsSetLayer(OOFEG_CRACK_PATTERN_LAYER);
                        EASValsSetLineWidth(OOFEG_CRACK_PATTERN_WIDTH);
                        if ( ( crackStatus == pscm_SOFTENING ) || ( crackStatus == pscm_OPEN ) ) {
                            EASValsSetColor( gc.getActiveCrackColor() );
                        } else {
                            EASValsSetColor( gc.getCrackPatternColor() );
                        }

                        //      EASValsSetFillStyle (FILL_HOLLOW);
                        tr = CreateQuad3D(q);
                        EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, tr);
                        EMAddGraphicsToModel(ESIModel(), tr);
                    }
                }
            }
        }
    }
}
Example #12
0
void QTrPlaneStress2d :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep)
{
    int t, n [ 3 ], i, indx, result = 0;
    WCRec p [ 3 ];
    GraphicObj *tr;
    FloatArray v [ 6 ];
    double s [ 6 ], ss [ 3 ], defScale;

    if ( !gc.testElementGraphicActivity(this) ) {
        return;
    }

    if ( gc.giveIntVarMode() == ISM_recovered ) {
        // ========= plot recovered values =========
        for ( i = 1; i <= 6; i++ ) {
            result += this->giveInternalStateAtNode(v [ i - 1 ], gc.giveIntVarType(), gc.giveIntVarMode(), i, tStep);
        }

        if ( result != 6 ) {
            return;
        }

        indx = gc.giveIntVarIndx();

        for ( i = 1; i <= 6; i++ ) {
            s [ i - 1 ] = v [ i - 1 ].at(indx);
        }

        EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER);

        if ( gc.getScalarAlgo() == SA_ISO_SURF ) {
            for ( t = 1; t <= 4; t++ ) {
                if ( t == 1 ) {
                    n [ 0 ] = 1;
                    n [ 1 ] = 4;
                    n [ 2 ] = 6;
                } else if ( t == 2 ) {
                    n [ 0 ] = 2;
                    n [ 1 ] = 5;
                    n [ 2 ] = 4;
                } else if ( t == 3 ) {
                    n [ 0 ] = 3;
                    n [ 1 ] = 6;
                    n [ 2 ] = 5;
                } else {
                    n [ 0 ] = 4;
                    n [ 1 ] = 5;
                    n [ 2 ] = 6;
                }


                for ( i = 0; i < 3; i++ ) {
                    if ( gc.getInternalVarsDefGeoFlag() ) {
                        // use deformed geometry
                        defScale = gc.getDefScale();
                        p [ i ].x = ( FPNum ) this->giveNode(n [ i ])->giveUpdatedCoordinate(1, tStep, defScale);
                        p [ i ].y = ( FPNum ) this->giveNode(n [ i ])->giveUpdatedCoordinate(2, tStep, defScale);
                        p [ i ].z = 0.;
                    } else {
                        // use initial geometry
                        p [ i ].x = ( FPNum ) this->giveNode(n [ i ])->giveCoordinate(1);
                        p [ i ].y = ( FPNum ) this->giveNode(n [ i ])->giveCoordinate(2);
                        p [ i ].z = 0.;
                    }
                }

                //EASValsSetColor(gc.getYieldPlotColor(ratio));
                ss [ 0 ] = s [ n [ 0 ] - 1 ];
                ss [ 1 ] = s [ n [ 1 ] - 1 ];
                ss [ 2 ] = s [ n [ 2 ] - 1 ];
                gc.updateFringeTableMinMax(ss, 3);
                tr =  CreateTriangleWD3D(p, ss [ 0 ], ss [ 1 ], ss [ 2 ]);
                EGWithMaskChangeAttributes(LAYER_MASK, tr);
                EMAddGraphicsToModel(ESIModel(), tr);
            }

            /* } else if (gc.getScalarAlgo() == SA_ISO_LINE) {
             *
             * EASValsSetColor(context.getActiveCrackColor());
             * EASValsSetLineWidth(OOFEG_ISO_LINE_WIDTH);
             *
             * for (t=1; t<=4; t++) {
             * if (t==1) {n[0] = 1; n[1]=4; n[2]=6;}
             * else if (t==2) {n[0]=2; n[1]=5; n[2]=4;}
             * else if (t==3) {n[0]=3; n[1]=6; n[2]=5;}
             * else {n[0]=4; n[1]=5; n[2]=6;}
             *
             *
             * for (i=0; i< 3; i++) {
             * if (gc.getInternalVarsDefGeoFlag()) {
             * // use deformed geometry
             * defScale = gc.getDefScale();
             * p[i].x = (FPNum) this->giveNode(n[i])->giveUpdatedCoordinate(1,tStep,defScale);
             * p[i].y = (FPNum) this->giveNode(n[i])->giveUpdatedCoordinate(2,tStep,defScale);
             * p[i].z = 0.;
             *
             * } else {
             * p[i].x = (FPNum) this->giveNode(n[i])->giveCoordinate(1);
             * p[i].y = (FPNum) this->giveNode(n[i])->giveCoordinate(2);
             * p[i].z = 0.;
             * }
             * }
             * sv[0]=s[n[0]-1];
             * sv[1]=s[n[1]-1];
             * sv[2]=s[n[2]-1];
             *
             * // isoline implementation
             * oofeg_drawIsoLinesOnTriangle (p, sv);
             * } */
        }
    } else if ( gc.giveIntVarMode() == ISM_local ) {
        // ========= plot local values =========
        // (so far implemented for 4 Gauss points only)
        if ( numberOfGaussPoints != 4 ) {
            return;
        }

        IntArray ind(3);
        WCRec pp [ 6 ];

        for ( i = 0; i < 6; i++ ) {
            if ( gc.getInternalVarsDefGeoFlag() ) {
                // use deformed geometry
                defScale = gc.getDefScale();
                pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
                pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale);
                pp [ i ].z = 0.;
            } else {
                // use initial geometry
                pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
                pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2);
                pp [ i ].z = 0.;
            }
        }

        for ( GaussPoint *gp: *integrationRulesArray [ 0 ] ) {
            //gpCoords = gp->giveNaturalCoordinates();
            switch ( gp->giveNumber() ) {
            case 3:
                ind.at(1) = 0;
                ind.at(2) = 3;
                ind.at(3) = 5;
                break;
            case 4:
                ind.at(1) = 1;
                ind.at(2) = 4;
                ind.at(3) = 3;
                break;
            case 2:
                ind.at(1) = 2;
                ind.at(2) = 5;
                ind.at(3) = 4;
                break;
            case 5:
            default:
                ind.at(1) = 3;
                ind.at(2) = 4;
                ind.at(3) = 5;
            }

            if ( giveIPValue(v [ 0 ], gp, gc.giveIntVarType(), tStep) == 0 ) {
                return;
            }

            indx = gc.giveIntVarIndx();

            for ( i = 1; i <= 3; i++ ) {
                s [ i - 1 ] = v [ 0 ].at(indx);
            }

            for ( i = 0; i < 3; i++ ) {
                p [ i ].x = pp [ ind.at(i + 1) ].x;
                p [ i ].y = pp [ ind.at(i + 1) ].y;
                p [ i ].z = pp [ ind.at(i + 1) ].z;
            }

            gc.updateFringeTableMinMax(s, 3);
            EASValsSetFillStyle(FILL_SOLID);
            tr =  CreateTriangleWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ]);
            EGWithMaskChangeAttributes(FILL_MASK | LAYER_MASK, tr);
            EMAddGraphicsToModel(ESIModel(), tr);
        }
    }
}
Example #13
0
void
TR_SHELL01 :: drawScalar(oofegGraphicContext &context)
{
    int i, indx, result = 0;
    WCRec p [ 3 ];
    GraphicObj *tr;
    TimeStep *tStep = this->giveDomain()->giveEngngModel()->giveCurrentStep();
    FloatArray v1, v2, v3;
    double s [ 3 ], defScale;
    if ( !context.testElementGraphicActivity(this) ) {
        return;
    }
    
    if ( !this->giveMaterial()->isActivated(tStep) ) {
        return;
    }

    if ( context.giveIntVarMode() == ISM_recovered ) {
        result += this->giveInternalStateAtNode(v1, context.giveIntVarType(), context.giveIntVarMode(), 1, tStep);
        result += this->giveInternalStateAtNode(v2, context.giveIntVarType(), context.giveIntVarMode(), 2, tStep);
        result += this->giveInternalStateAtNode(v3, context.giveIntVarType(), context.giveIntVarMode(), 3, tStep);
    } else if ( context.giveIntVarMode() == ISM_local ) {
        int nip = plate->giveDefaultIntegrationRulePtr()->giveNumberOfIntegrationPoints();
        FloatArray a, v(12);
        v.zero();
        for (int _i=1; _i<= nip; _i++) {
            this->giveIPValue(a, plate->giveDefaultIntegrationRulePtr()->getIntegrationPoint(_i-1), IST_ShellForceMomentumTensor, tStep);
            v += a;
        }
        v.times(1./nip);
        v1 = v;
        v2 =v;
        v3 =v;
    }

    indx = context.giveIntVarIndx();

    s [ 0 ] = v1.at(indx);
    s [ 1 ] = v2.at(indx);
    s [ 2 ] = v3.at(indx);
    EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER);
    if ( context.getScalarAlgo() == SA_ISO_SURF ) {
        for ( i = 0; i < 3; i++ ) {
            if ( context.getInternalVarsDefGeoFlag() ) {
                // use deformed geometry
                defScale = context.getDefScale();
                p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale);
                p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale);
                p [ i ].z = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(3, tStep, defScale);
            } else {
                p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1);
                p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2);
                p [ i ].z = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(3);
            }
        }
        //     //EASValsSetColor(gc.getYieldPlotColor(ratio));
        context.updateFringeTableMinMax(s, 3);
        tr =  CreateTriangleWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ]);
        EGWithMaskChangeAttributes(LAYER_MASK, tr);
        EMAddGraphicsToModel(ESIModel(), tr);
    }
}