NEWMAT::ColumnVector ossimRpcProjection::getResidue(const ossimTieGptSet& tieSet) { //init NEWMAT::ColumnVector residue; int dimObs; bool useImageObs = useForward(); //caching if (useImageObs) { dimObs = 2; //image observation } else { dimObs = 3; //ground observations } int no = dimObs * tieSet.size(); //number of observations residue.ReSize(no); const vector<ossimRefPtr<ossimTieGpt> >& theTPV = tieSet.getTiePoints(); vector<ossimRefPtr<ossimTieGpt> >::const_iterator tit; unsigned long c=1; if (useImageObs) { //image observations ossimDpt resIm; // loop on tie points for (tit = theTPV.begin() ; tit != theTPV.end() ; ++tit) { //compute residue resIm = (*tit)->tie - forward(**tit); residue(c++) = resIm.x; residue(c++) = resIm.y; } } else { // ground observations ossimGpt gd; // loop on tie points for (tit = theTPV.begin() ; tit != theTPV.end() ; ++tit) { //compute residue gd = inverse((*tit)->tie); residue(c++) = ((*tit)->lon - gd.lon) * 100000.0; //approx meters //TBC TBD residue(c++) = ((*tit)->lat - gd.lat) * 100000.0 * cos(gd.lat / 180.0 * M_PI); residue(c++) = (*tit)->hgt - gd.hgt; //meters } } //end of if (useImageObs) return residue; }
double ossimRpcModel::optimizeFit(const ossimTieGptSet& tieSet, double* targetVariance) { int nGpt = static_cast<int>(tieSet.size()); if(nGpt < 1) { return 0.0; } else if(nGpt < 2) { m_modelOptimizeType = OptImageTranslation; } else if(nGpt < 3) { //m_modelOptimizeType = OptImageTrans_scale; m_modelOptimizeType = OptImageTranslation; } else { m_modelOptimizeType = OptImageAffine; } return ossimSensorModel::optimizeFit(tieSet, targetVariance); }
void ossimRpcProjection::buildNormalEquation(const ossimTieGptSet& tieSet, NEWMAT::SymmetricMatrix& A, NEWMAT::ColumnVector& residue, NEWMAT::ColumnVector& projResidue, double pstep_scale) { //goal: build Least Squares system //constraint: never store full Jacobian matrix in memory (can be huge) // so we build the matrices incrementally // the system can be built using forward() or inverse() depending on the projection capabilities : useForward() // //TBD : add covariance matrix for each tie point //init int np = getNumberOfAdjustableParameters(); int dimObs; bool useImageObs = useForward(); //caching if (useImageObs) { dimObs = 2; //image observation } else { dimObs = 3; //ground observations } int no = dimObs * tieSet.size(); //number of observations A.ReSize(np); residue.ReSize(no); projResidue.ReSize(np); //Zeroify matrices that will be accumulated A = 0.0; projResidue = 0.0; const vector<ossimRefPtr<ossimTieGpt> >& theTPV = tieSet.getTiePoints(); vector<ossimRefPtr<ossimTieGpt> >::const_iterator tit; unsigned long c=1; if (useImageObs) { //image observations ossimDpt* imDerp = new ossimDpt[np]; ossimDpt resIm; // loop on tie points for (tit = theTPV.begin() ; tit != theTPV.end() ; ++tit) { //compute residue resIm = (*tit)->tie - forward(*(*tit)); residue(c++) = resIm.x; residue(c++) = resIm.y; //compute all image derivatives regarding parametres for the tie point position for(int p=0;p<np;++p) { imDerp[p] = getForwardDeriv( p , *(*tit) , pstep_scale); } //compute influence of tie point on all sytem elements for(int p1=0;p1<np;++p1) { //proj residue: J * residue projResidue.element(p1) += imDerp[p1].x * resIm.x + imDerp[p1].y * resIm.y; //normal matrix A = transpose(J)*J for(int p2=p1;p2<np;++p2) { A.element(p1,p2) += imDerp[p1].x * imDerp[p2].x + imDerp[p1].y * imDerp[p2].y; } } } delete []imDerp; } else { // ground observations std::vector<ossimGpt> gdDerp(np); ossimGpt gd, resGd; // loop on tie points for (tit = theTPV.begin() ; tit != theTPV.end() ; ++tit) { //compute residue gd = inverse((*tit)->tie); residue(c++) = resGd.lon = ((*tit)->lon - gd.lon) * 100000.0; residue(c++) = resGd.lat = ((*tit)->lat - gd.lat) * 100000.0 * cos(gd.lat / 180.0 * M_PI); residue(c++) = resGd.hgt = (*tit)->hgt - gd.hgt; //TBD : normalize to meters? //compute all image derivatives regarding parametres for the tie point position for(int p=0;p<np;++p) { gdDerp[p] = getInverseDeriv( p , (*tit)->tie, pstep_scale); } //compute influence of tie point on all sytem elements for(int p1=0;p1<np;++p1) { //proj residue: J * residue projResidue.element(p1) += gdDerp[p1].lon * resGd.lon + gdDerp[p1].lat * resGd.lat + gdDerp[p1].hgt * resGd.hgt; //TBC //normal matrix A = transpose(J)*J for(int p2=p1;p2<np;++p2) { A.element(p1,p2) += gdDerp[p1].lon * gdDerp[p2].lon + gdDerp[p1].lat * gdDerp[p2].lat + gdDerp[p1].hgt * gdDerp[p2].hgt; } } } } //end of if (useImageObs) }
double ossimRpcProjection::optimizeFit(const ossimTieGptSet& tieSet, double* /* targetVariance */) { #if 1 //NOTE : ignore targetVariance ossimRefPtr<ossimRpcSolver> solver = new ossimRpcSolver(false, false); //TBD : choices should be part of setupFromString std::vector<ossimDpt> imagePoints; std::vector<ossimGpt> groundPoints; tieSet.getSlaveMasterPoints(imagePoints, groundPoints); solver->solveCoefficients(imagePoints, groundPoints); ossimRefPtr< ossimImageGeometry > optProj = solver->createRpcProjection(); if (!optProj) { ossimNotify(ossimNotifyLevel_FATAL) << "FATAL ossimRpcProjection::optimizeFit(): error when optimizing the RPC with given tie points" << std::endl; return -1.0; } if(optProj->hasProjection()) { ossimKeywordlist kwl; optProj->getProjection()->saveState(kwl); this->loadState(kwl); } return std::pow(solver->getRmsError(), 2); //variance in pixel^2 #else // COPIED from ossimRpcProjection // // //use a simple Levenberg-Marquardt non-linear optimization //note : please limit the number of tie points // //INPUTS: requires Jacobian matrix (partial derivatives with regards to parameters) //OUTPUTS: will also compute parameter covariance matrix // //TBD: use targetVariance! int np = getNumberOfAdjustableParameters(); int nobs = tieSet.size(); //setup initail values int iter=0; int iter_max = 200; double minResidue = 1e-10; //TBC double minDelta = 1e-10; //TBC //build Least Squares initial normal equation // don't waste memory, add samples one at a time NEWMAT::SymmetricMatrix A; NEWMAT::ColumnVector residue; NEWMAT::ColumnVector projResidue; double deltap_scale = 1e-4; //step_Scale is 1.0 because we expect parameters to be between -1 and 1 buildNormalEquation(tieSet, A, residue, projResidue, deltap_scale); double ki2=residue.SumSquare(); //get current adjustment (between -1 and 1 normally) and convert to ColumnVector ossimAdjustmentInfo cadj; getAdjustment(cadj); std::vector< ossimAdjustableParameterInfo >& parmlist = cadj.getParameterList(); NEWMAT::ColumnVector cparm(np), nparm(np); for(int n=0;n<np;++n) { cparm(n+1) = parmlist[n].getParameter(); } double damping_speed = 2.0; //find max diag element for A double maxdiag=0.0; for(int d=1;d<=np;++d) { if (maxdiag < A(d,d)) maxdiag=A(d,d); } double damping = 1e-3 * maxdiag; double olddamping = 0.0; bool found = false; //DEBUG TBR cout<<"rms="<<sqrt(ki2/nobs)<<" "; cout.flush(); while ( (!found) && (iter < iter_max) ) //non linear optimization loop { bool decrease = false; do { //add damping update to normal matrix for(int d=1;d<=np;++d) A(d,d) += damping - olddamping; olddamping = damping; NEWMAT::ColumnVector deltap = solveLeastSquares(A, projResidue); if (deltap.NormFrobenius() <= minDelta) { found = true; } else { //update adjustment nparm = cparm + deltap; for(int n=0;n<np;++n) { setAdjustableParameter(n, nparm(n+1), false); //do not update now, wait } adjustableParametersChanged(); //check residue is reduced NEWMAT::ColumnVector newresidue = getResidue(tieSet); double newki2=newresidue.SumSquare(); double res_reduction = (ki2 - newki2) / (deltap.t()*(deltap*damping + projResidue)).AsScalar(); //DEBUG TBR cout<<sqrt(newki2/nobs)<<" "; cout.flush(); if (res_reduction > 0) { //accept new parms cparm = nparm; ki2=newki2; deltap_scale = max(1e-15, deltap.NormInfinity()*1e-4); buildNormalEquation(tieSet, A, residue, projResidue, deltap_scale); olddamping = 0.0; found = ( projResidue.NormInfinity() <= minResidue ); //update damping factor damping *= std::max( 1.0/3.0, 1.0-std::pow((2.0*res_reduction-1.0),3)); damping_speed = 2.0; decrease = true; } else { //cancel parameter update for(int n=0;n<np;++n) { setAdjustableParameter(n, nparm(n+1), false); //do not update right now } adjustableParametersChanged(); damping *= damping_speed; damping_speed *= 2.0; } } } while (!decrease && !found); ++iter; } //DEBUG TBR cout<<endl; //compute parameter correlation // use normal matrix inverse //TBD return ki2/nobs; #endif }