void init_prev_population() { for(int i = 0; i < population_size; ++i) { specimen s; s.perm = permutation(N); s.eval = s.adapt = 0.0; prev_population.push_back(s); } }
void enumerate_program_trees(generation_table& gtable, int depth, combo::type_tree& ttree, population& pop, const reduct::rule& reduction_rule) { pop.clear(); // For each generation node with the right return-type, add it to the pop for (std::vector<generation_node>::iterator it = gtable.begin(); it != gtable.end(); ++it) { if (combo::equal_type_tree(it->node, combo::get_signature_output(ttree))) { for (node_list::iterator it2 = it->glist.begin(); it2 != it->glist.end(); it2++) pop.push_back(combo::combo_tree(*it2)); break; } } // add the right number of arguments int from_arg = combo::get_signature_inputs(ttree).size(); combo::arity_t needed_arg_count = combo::type_tree_arity(ttree); std::cout << ttree << " " << needed_arg_count << std::endl; for (int i = 1; i < depth; i++) { fill_leaves(pop, from_arg); reduce(pop, reduction_rule); increase_tree_depth(gtable, pop, i, needed_arg_count, from_arg, reduction_rule); } for (population::iterator it = pop.begin(); it != pop.end();) { bool erased = false; for (combo::combo_tree::leaf_iterator lit = it->begin_leaf(); lit != it->end_leaf(); ++lit) { if (get_arity(*lit) != 0 && !combo::is_argument(*lit)) { erased = true; break; } } if (!combo::does_contain_all_arg_up_to(*it, needed_arg_count)) { erased = true; } if (erased) it = pop.erase(it); else ++it; } }
/** * Run the co-evolution algorithm * * @param[in,out] pop input/output pagmo::population to be evolved. */ void cstrs_co_evolution::evolve(population &pop) const { // Let's store some useful variables. const problem::base &prob = pop.problem(); const population::size_type pop_size = pop.size(); const problem::base::size_type prob_dimension = prob.get_dimension(); // get the constraints dimension problem::base::c_size_type prob_c_dimension = prob.get_c_dimension(); //We perform some checks to determine wether the problem/population are suitable for co-evolution if(prob_c_dimension < 1) { pagmo_throw(value_error,"The problem is not constrained and co-evolution is not suitable to solve it"); } if(prob.get_f_dimension() != 1) { pagmo_throw(value_error,"The problem is multiobjective and co-evolution is not suitable to solve it"); } // Get out if there is nothing to do. if(pop_size == 0) { return; } //get the dimension of the chromosome of P2 unsigned int pop_2_dim = 0; switch(m_method) { case algorithm::cstrs_co_evolution::SIMPLE: { pop_2_dim = 2; break; } case algorithm::cstrs_co_evolution::SPLIT_NEQ_EQ: { pop_2_dim = 4; break; } case algorithm::cstrs_co_evolution::SPLIT_CONSTRAINTS: pop_2_dim = 2*prob.get_c_dimension(); break; default: pagmo_throw(value_error,"The constraints co-evolutionary method is not valid."); break; } // split the population into two populations // the population P1 associated to the modified problem with penalized fitness // and population P2 encoding the penalty weights // Populations size population::size_type pop_1_size = pop_size; population::size_type pop_2_size = m_pop_penalties_size; //Creates problem associated to P2 problem::cstrs_co_evolution_penalty prob_2(prob,pop_2_dim,pop_2_size); prob_2.set_bounds(m_pen_lower_bound,m_pen_upper_bound); //random initialization of the P2 chromosome (needed for the fist generation) std::vector<decision_vector> pop_2_x(pop_2_size); std::vector<fitness_vector> pop_2_f(pop_2_size); for(population::size_type j=0; j<pop_2_size; j++) { pop_2_x[j] = decision_vector(pop_2_dim,0.); // choose random coefficients between lower bound and upper bound for(population::size_type i=0; i<pop_2_dim;i++) { pop_2_x[j][i] = boost::uniform_real<double>(m_pen_lower_bound,m_pen_upper_bound)(m_drng); } } //vector of the population P1. Initialized with clones of the original population std::vector<population> pop_1_vector; for(population::size_type i=0; i<pop_2_size; i++){ pop_1_vector.push_back(population(pop)); } // Main Co-Evolution loop for(int k=0; k<m_gen; k++) { // for each individuals of pop 2, evolve the current population, // and store the position of the feasible idx for(population::size_type j=0; j<pop_2_size; j++) { problem::cstrs_co_evolution prob_1(prob, pop_1_vector.at(j), m_method); // modify the problem by setting decision vector encoding penalty // coefficients w1 and w2 in prob 1 prob_1.set_penalty_coeff(pop_2_x.at(j)); // creating the POPULATION 1 instance based on the // updated prob 1 // prob_1 is a BASE_META???? THE CLONE OF prob_1 IN POP_1 IS AT THE LEVEL OF // THE BASE CLASS AND NOT AT THE LEVEL OF THE BASE_META, NO?!? population pop_1(prob_1,0); // initialize P1 chromosomes. The fitnesses related to problem 1 are computed for(population::size_type i=0; i<pop_1_size; i++) { pop_1.push_back(pop_1_vector.at(j).get_individual(i).cur_x); } // evolve the P1 instance m_original_algo->evolve(pop_1); //updating the original problem population (computation of fitness and constraints) pop_1_vector.at(j).clear(); for(population::size_type i=0; i<pop_1_size; i++){ pop_1_vector.at(j).push_back(pop_1.get_individual(i).cur_x); } // set up penalization variables needs for the population 2 // the constraints has not been evaluated yet. prob_2.update_penalty_coeff(j,pop_2_x.at(j),pop_1_vector.at(j)); } // creating the POPULATION 2 instance based on the // updated prob 2 population pop_2(prob_2,0); // compute the fitness values of the second population for(population::size_type i=0; i<pop_2_size; i++) { pop_2.push_back(pop_2_x[i]); } m_original_algo_penalties->evolve(pop_2); // store the new chromosomes for(population::size_type i=0; i<pop_2_size; i++) { pop_2_x[i] = pop_2.get_individual(i).cur_x; pop_2_f[i] = pop_2.get_individual(i).cur_f; } // Check the exit conditions (every 40 generations, just as DE) if(k % 40 == 0) { // finds the best population population::size_type best_idx = 0; for(population::size_type j=1; j<pop_2_size; j++) { if(pop_2_f[j][0] < pop_2_f[best_idx][0]) { best_idx = j; } } const population ¤t_population = pop_1_vector.at(best_idx); decision_vector tmp(prob_dimension); double dx = 0; for(decision_vector::size_type i=0; i<prob_dimension; i++) { tmp[i] = current_population.get_individual(current_population.get_worst_idx()).best_x[i] - current_population.get_individual(current_population.get_best_idx()).best_x[i]; dx += std::fabs(tmp[i]); } if(dx < m_xtol ) { if (m_screen_output) { std::cout << "Exit condition -- xtol < " << m_xtol << std::endl; } break; } double mah = std::fabs(current_population.get_individual(current_population.get_worst_idx()).best_f[0] - current_population.get_individual(current_population.get_best_idx()).best_f[0]); if(mah < m_ftol) { if(m_screen_output) { std::cout << "Exit condition -- ftol < " << m_ftol << std::endl; } break; } // outputs current values if(m_screen_output) { std::cout << "Generation " << k << " ***" << std::endl; std::cout << " Best global fitness: " << current_population.champion().f << std::endl; std::cout << " xtol: " << dx << ", ftol: " << mah << std::endl; std::cout << " xtol: " << dx << ", ftol: " << mah << std::endl; } } } // find the best fitness population in the final pop population::size_type best_idx = 0; for(population::size_type j=1; j<pop_2_size; j++) { if(pop_2_f[j][0] < pop_2_f[best_idx][0]) { best_idx = j; } } // store the final population in the main population // can't avoid to recompute the vectors here, otherwise we // clone the problem stored in the population with the // pop = operator! pop.clear(); for(population::size_type i=0; i<pop_1_size; i++) { pop.push_back(pop_1_vector.at(best_idx).get_individual(i).cur_x); } }
void ihs::evolve(population &pop) const { // Let's store some useful variables. const problem::base &prob = pop.problem(); const problem::base::size_type prob_dimension = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension(); const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub(); const population::size_type pop_size = pop.size(); // Get out if there is nothing to do. if (pop_size == 0 || m_gen == 0) { return; } decision_vector lu_diff(prob_dimension); for (problem::base::size_type i = 0; i < prob_dimension; ++i) { lu_diff[i] = ub[i] - lb[i]; } // Int distribution to be used when picking random individuals. boost::uniform_int<population::size_type> uni_int(0,pop_size - 1); const double c = std::log(m_bw_min/m_bw_max) / m_gen; // Temporary individual used during evolution. population::individual_type tmp; tmp.cur_x.resize(prob_dimension); tmp.cur_f.resize(prob.get_f_dimension()); tmp.cur_c.resize(prob.get_c_dimension()); for (std::size_t g = 0; g < m_gen; ++g) { const double ppar_cur = m_ppar_min + ((m_ppar_max - m_ppar_min) * g) / m_gen, bw_cur = m_bw_max * std::exp(c * g); // Continuous part. for (problem::base::size_type i = 0; i < prob_dimension - prob_i_dimension; ++i) { if (m_drng() < m_phmcr) { // tmp's i-th chromosome element is the one from a randomly chosen individual. tmp.cur_x[i] = pop.get_individual(uni_int(m_urng)).cur_x[i]; // Do pitch adjustment with ppar_cur probability. if (m_drng() < ppar_cur) { // Randomly, add or subtract pitch from the current chromosome element. if (m_drng() > .5) { tmp.cur_x[i] += m_drng() * bw_cur * lu_diff[i]; } else { tmp.cur_x[i] -= m_drng() * bw_cur * lu_diff[i]; } // Handle the case in which we added or subtracted too much and ended up out // of boundaries. if (tmp.cur_x[i] > ub[i]) { tmp.cur_x[i] = boost::uniform_real<double>(lb[i],ub[i])(m_drng); } else if (tmp.cur_x[i] < lb[i]) { tmp.cur_x[i] = boost::uniform_real<double>(lb[i],ub[i])(m_drng); } } } else { // Pick randomly within the bounds. tmp.cur_x[i] = boost::uniform_real<double>(lb[i],ub[i])(m_drng); } } //Integer Part for (problem::base::size_type i = prob_dimension - prob_i_dimension; i < prob_dimension; ++i) { if (m_drng() < m_phmcr) { tmp.cur_x[i] = pop.get_individual(uni_int(m_urng)).cur_x[i]; if (m_drng() < ppar_cur) { if (m_drng() > .5) { tmp.cur_x[i] += double_to_int::convert(m_drng() * bw_cur * lu_diff[i]); } else { tmp.cur_x[i] -= double_to_int::convert(m_drng() * bw_cur * lu_diff[i]); } // Wrap over in case we went past the bounds. if (tmp.cur_x[i] > ub[i]) { tmp.cur_x[i] = lb[i] + double_to_int::convert(tmp.cur_x[i] - ub[i]) % static_cast<int>(lu_diff[i]); } else if (tmp.cur_x[i] < lb[i]) { tmp.cur_x[i] = ub[i] - double_to_int::convert(lb[i] - tmp.cur_x[i]) % static_cast<int>(lu_diff[i]); } } } else { // Pick randomly within the bounds. tmp.cur_x[i] = boost::uniform_int<int>(lb[i],ub[i])(m_urng); } } // And we push him back pop.push_back(tmp.cur_x); // We locate the worst individual. const population::size_type worst_idx = pop.get_worst_idx(); // And we get rid of him :) pop.erase(worst_idx); } }
/** * Run the CORE algorithm * * @param[in,out] pop input/output pagmo::population to be evolved. */ void cstrs_core::evolve(population &pop) const { // store useful variables const problem::base &prob = pop.problem(); const population::size_type pop_size = pop.size(); const problem::base::size_type prob_dimension = prob.get_dimension(); // get the constraints dimension problem::base::c_size_type prob_c_dimension = prob.get_c_dimension(); //We perform some checks to determine wether the problem/population are suitable for CORE if(prob_c_dimension < 1) { pagmo_throw(value_error,"The problem is not constrained and CORE is not suitable to solve it"); } if(prob.get_f_dimension() != 1) { pagmo_throw(value_error,"The problem is multiobjective and CORE is not suitable to solve it"); } // Get out if there is nothing to do. if(pop_size == 0) { return; } // generates the unconstrained problem problem::con2uncon prob_unconstrained(prob); // associates the population to this problem population pop_uncon(prob_unconstrained); // fill this unconstrained population pop_uncon.clear(); for(population::size_type i=0; i<pop_size; i++) { pop_uncon.push_back(pop.get_individual(i).cur_x); } // vector containing the infeasibles positions std::vector<population::size_type> pop_infeasibles; // Main CORE loop for(int k=0; k<m_gen; k++) { if(k%m_repair_frequency == 0) { pop_infeasibles.clear(); // get the infeasible individuals for(population::size_type i=0; i<pop_size; i++) { if(!prob.feasibility_c(pop.get_individual(i).cur_c)) { pop_infeasibles.push_back(i); } } // random shuffle of infeasibles? population::size_type number_of_repair = (population::size_type)(m_repair_ratio * pop_infeasibles.size()); // repair the infeasible individuals for(population::size_type i=0; i<number_of_repair; i++) { const population::size_type ¤t_individual_idx = pop_infeasibles.at(i); pop.repair(current_individual_idx, m_repair_algo); } // the population is repaired, it can be now used in the new unconstrained population // only the repaired individuals are put back in the population for(population::size_type i=0; i<number_of_repair; i++) { population::size_type current_individual_idx = pop_infeasibles.at(i); pop_uncon.set_x(current_individual_idx, pop.get_individual(current_individual_idx).cur_x); } } m_original_algo->evolve(pop_uncon); // push back the population in the main problem pop.clear(); for(population::size_type i=0; i<pop_size; i++) { pop.push_back(pop_uncon.get_individual(i).cur_x); } // Check the exit conditions (every 40 generations, just as DE) if(k % 40 == 0) { decision_vector tmp(prob_dimension); double dx = 0; for(decision_vector::size_type i=0; i<prob_dimension; i++) { tmp[i] = pop.get_individual(pop.get_worst_idx()).best_x[i] - pop.get_individual(pop.get_best_idx()).best_x[i]; dx += std::fabs(tmp[i]); } if(dx < m_xtol ) { if (m_screen_output) { std::cout << "Exit condition -- xtol < " << m_xtol << std::endl; } break; } double mah = std::fabs(pop.get_individual(pop.get_worst_idx()).best_f[0] - pop.get_individual(pop.get_best_idx()).best_f[0]); if(mah < m_ftol) { if(m_screen_output) { std::cout << "Exit condition -- ftol < " << m_ftol << std::endl; } break; } // outputs current values if(m_screen_output) { std::cout << "Generation " << k << " ***" << std::endl; std::cout << " Best global fitness: " << pop.champion().f << std::endl; std::cout << " xtol: " << dx << ", ftol: " << mah << std::endl; std::cout << " xtol: " << dx << ", ftol: " << mah << std::endl; } } } }