Example #1
0
tmp<fvMatrix<Type> >
noConvectionScheme<Type>::fvmDiv
(
    const surfaceScalarField& faceFlux,
    GeometricField<Type, fvPatchField, volMesh>& vf
) const
{
    tmp<fvMatrix<Type> > tfvm
    (
        new fvMatrix<Type>
        (
            vf,
            faceFlux.dimensions()*vf.dimensions()
        )
    );

    // Touch diagonal for consistency
    tfvm().diag() = 0;

    return tfvm;
}
Example #2
0
void Foam::MULES::implicitSolve
(
    const RhoType& rho,
    volScalarField& psi,
    const surfaceScalarField& phi,
    surfaceScalarField& phiPsi,
    const SpType& Sp,
    const SuType& Su,
    const scalar psiMax,
    const scalar psiMin
)
{
    const fvMesh& mesh = psi.mesh();

    const dictionary& MULEScontrols = mesh.solverDict(psi.name());

    label maxIter
    (
        readLabel(MULEScontrols.lookup("maxIter"))
    );

    label nLimiterIter
    (
        readLabel(MULEScontrols.lookup("nLimiterIter"))
    );

    scalar maxUnboundedness
    (
        readScalar(MULEScontrols.lookup("maxUnboundedness"))
    );

    scalar CoCoeff
    (
        readScalar(MULEScontrols.lookup("CoCoeff"))
    );

    scalarField allCoLambda(mesh.nFaces());

    {
        slicedSurfaceScalarField CoLambda
        (
            IOobject
            (
                "CoLambda",
                mesh.time().timeName(),
                mesh,
                IOobject::NO_READ,
                IOobject::NO_WRITE,
                false
            ),
            mesh,
            dimless,
            allCoLambda,
            false   // Use slices for the couples
        );

        if (phi.dimensions() == dimDensity*dimVelocity*dimArea)
        {
            tmp<surfaceScalarField> Cof =
                mesh.time().deltaT()*mesh.surfaceInterpolation::deltaCoeffs()
               *mag(phi/interpolate(rho))/mesh.magSf();

            CoLambda == 1.0/max(CoCoeff*Cof, scalar(1));
        }
        else
        {
            tmp<surfaceScalarField> Cof =
                mesh.time().deltaT()*mesh.surfaceInterpolation::deltaCoeffs()
               *mag(phi)/mesh.magSf();

            CoLambda == 1.0/max(CoCoeff*Cof, scalar(1));
        }
    }

    scalarField allLambda(allCoLambda);
    //scalarField allLambda(mesh.nFaces(), 1.0);

    slicedSurfaceScalarField lambda
    (
        IOobject
        (
            "lambda",
            mesh.time().timeName(),
            mesh,
            IOobject::NO_READ,
            IOobject::NO_WRITE,
            false
        ),
        mesh,
        dimless,
        allLambda,
        false   // Use slices for the couples
    );

    linear<scalar> CDs(mesh);
    upwind<scalar> UDs(mesh, phi);
    //fv::uncorrectedSnGrad<scalar> snGrads(mesh);

    fvScalarMatrix psiConvectionDiffusion
    (
        fvm::ddt(rho, psi)
      + fv::gaussConvectionScheme<scalar>(mesh, phi, UDs).fvmDiv(phi, psi)
        //- fv::gaussLaplacianScheme<scalar, scalar>(mesh, CDs, snGrads)
        //.fvmLaplacian(Dpsif, psi)
      - fvm::Sp(Sp, psi)
      - Su
    );

    surfaceScalarField phiBD(psiConvectionDiffusion.flux());

    surfaceScalarField& phiCorr = phiPsi;
    phiCorr -= phiBD;

    for (label i=0; i<maxIter; i++)
    {
        if (i != 0 && i < 4)
        {
            allLambda = allCoLambda;
        }

        limiter
        (
            allLambda,
            rho,
            psi,
            phiBD,
            phiCorr,
            Sp,
            Su,
            psiMax,
            psiMin,
            nLimiterIter
        );

        solve
        (
            psiConvectionDiffusion + fvc::div(lambda*phiCorr),
            MULEScontrols
        );

        scalar maxPsiM1 = gMax(psi.internalField()) - 1.0;
        scalar minPsi = gMin(psi.internalField());

        scalar unboundedness = max(max(maxPsiM1, 0.0), -min(minPsi, 0.0));

        if (unboundedness < maxUnboundedness)
        {
            break;
        }
        else
        {
            Info<< "MULES: max(" << psi.name() << " - 1) = " << maxPsiM1
                << " min(" << psi.name() << ") = " << minPsi << endl;

            phiBD = psiConvectionDiffusion.flux();

            /*
            word gammaScheme("div(phi,gamma)");
            word gammarScheme("div(phirb,gamma)");

            const surfaceScalarField& phir =
                mesh.lookupObject<surfaceScalarField>("phir");

            phiCorr =
                fvc::flux
                (
                    phi,
                    psi,
                    gammaScheme
                )
              + fvc::flux
                (
                    -fvc::flux(-phir, scalar(1) - psi, gammarScheme),
                    psi,
                    gammarScheme
                )
                - phiBD;
            */
        }
    }

    phiPsi = psiConvectionDiffusion.flux() + lambda*phiCorr;
}