/* ************************************************************************* */ TEST( ProjectionFactorPPPC, Equals ) { // Create two identical factors and make sure they're equal Point2 measurement(323.0, 240.0); TestProjectionFactor factor1(measurement, model, X(1), T(1), L(1), K(1)); TestProjectionFactor factor2(measurement, model, X(1), T(1), L(1), K(1)); CHECK(assert_equal(factor1, factor2)); }
/* ************************************************************************* */ TEST( ProjectionFactorPPPC, JacobianWithTransform ) { // Create the factor with a measurement that is 3 pixels off in x Point2 measurement(323.0, 240.0); Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0)); TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1)); // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0) Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0)); Point3 point(0.0, 0.0, 0.0); // Use the factor to calculate the Jacobians Matrix H1Actual, H2Actual, H3Actual, H4Actual; factor.evaluateError(pose, body_P_sensor, point, *K1, H1Actual, H2Actual, H3Actual, H4Actual); // The expected Jacobians Matrix H1Expected = (Matrix(2, 6) << -92.376, 0., 577.350, 0., 92.376, 0., -9.2376, -577.350, 0., 0., 0., 92.376).finished(); Matrix H3Expected = (Matrix(2, 3) << 0., -92.376, 0., 0., 0., -92.376).finished(); // Verify the Jacobians are correct CHECK(assert_equal(H1Expected, H1Actual, 1e-3)); CHECK(assert_equal(H3Expected, H3Actual, 1e-3)); // Verify H2 and H4 with numerical derivatives Matrix H2Expected = numericalDerivative11<Vector, Pose3>( boost::bind(&TestProjectionFactor::evaluateError, &factor, pose, _1, point, *K1, boost::none, boost::none, boost::none, boost::none), body_P_sensor); Matrix H4Expected = numericalDerivative11<Vector, Cal3_S2>( boost::bind(&TestProjectionFactor::evaluateError, &factor, pose, body_P_sensor, point, _1, boost::none, boost::none, boost::none, boost::none), *K1); CHECK(assert_equal(H2Expected, H2Actual, 1e-5)); CHECK(assert_equal(H4Expected, H4Actual, 1e-5)); }
/* ************************************************************************* */ TEST( ProjectionFactorPPPC, Jacobian ) { // Create the factor with a measurement that is 3 pixels off in x Point2 measurement(323.0, 240.0); TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1)); // Set the linearization point Pose3 pose(Rot3(), Point3(0,0,-6)); Point3 point(0.0, 0.0, 0.0); // Use the factor to calculate the Jacobians Matrix H1Actual, H2Actual, H3Actual, H4Actual; factor.evaluateError(pose, Pose3(), point, *K1, H1Actual, H2Actual, H3Actual, H4Actual); // The expected Jacobians Matrix H1Expected = (Matrix(2, 6) << 0., -554.256, 0., -92.376, 0., 0., 554.256, 0., 0., 0., -92.376, 0.).finished(); Matrix H3Expected = (Matrix(2, 3) << 92.376, 0., 0., 0., 92.376, 0.).finished(); // Verify the Jacobians are correct CHECK(assert_equal(H1Expected, H1Actual, 1e-3)); CHECK(assert_equal(H3Expected, H3Actual, 1e-3)); // Verify H2 and H4 with numerical derivatives Matrix H2Expected = numericalDerivative11<Vector, Pose3>( boost::bind(&TestProjectionFactor::evaluateError, &factor, pose, _1, point, *K1, boost::none, boost::none, boost::none, boost::none), Pose3()); Matrix H4Expected = numericalDerivative11<Vector, Cal3_S2>( boost::bind(&TestProjectionFactor::evaluateError, &factor, pose, Pose3(), point, _1, boost::none, boost::none, boost::none, boost::none), *K1); CHECK(assert_equal(H2Expected, H2Actual, 1e-5)); CHECK(assert_equal(H4Expected, H4Actual, 1e-5)); }
/* ************************************************************************* */ TEST( ProjectionFactorPPPC, Error ) { // Create the factor with a measurement that is 3 pixels off in x Point2 measurement(323.0, 240.0); TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1)); // Set the linearization point Pose3 pose(Rot3(), Point3(0,0,-6)); Point3 point(0.0, 0.0, 0.0); // Use the factor to calculate the error Vector actualError(factor.evaluateError(pose, Pose3(), point, *K1)); // The expected error is (-3.0, 0.0) pixels / UnitCovariance Vector expectedError = Vector2(-3.0, 0.0); // Verify we get the expected error CHECK(assert_equal(expectedError, actualError, 1e-9)); }
/* ************************************************************************* */ TEST( ProjectionFactorPPPC, ErrorWithTransform ) { // Create the factor with a measurement that is 3 pixels off in x Point2 measurement(323.0, 240.0); Pose3 transform(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0)); TestProjectionFactor factor(measurement, model, X(1),T(1), L(1), K(1)); // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0) Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0)); Point3 point(0.0, 0.0, 0.0); // Use the factor to calculate the error Vector actualError(factor.evaluateError(pose, transform, point, *K1)); // The expected error is (-3.0, 0.0) pixels / UnitCovariance Vector expectedError = Vector2(-3.0, 0.0); // Verify we get the expected error CHECK(assert_equal(expectedError, actualError, 1e-9)); }
/* ************************************************************************* */ TEST( ProjectionFactorPPPC, Constructor) { Point2 measurement(323.0, 240.0); TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1)); // TODO: Actually check something }