Example #1
0
void CApplication::ProcessJoystickInput()
{
	if (g_aJoysticks.size() != MAX_JOYSTICKS)
		return;

	for (size_t i = 0; i < MAX_JOYSTICKS; i++)
	{
		CJoystick& oJoystick = g_aJoysticks[i];

		if (!oJoystick.m_bPresent)
			continue;

		static tvector<float> aflAxis;
		aflAxis.resize(oJoystick.m_aflAxis.size());
		glfwGetJoystickPos(i, &aflAxis[0], oJoystick.m_aflAxis.size());

		for (size_t j = 0; j < oJoystick.m_aflAxis.size(); j++)
		{
			if (aflAxis[j] != oJoystick.m_aflAxis[j])
				JoystickAxis(i, j, aflAxis[j], aflAxis[j]-oJoystick.m_aflAxis[j]);
		}

		oJoystick.m_aflAxis = aflAxis;

		static tvector<unsigned char> aiButtons;
		aiButtons.resize(oJoystick.m_iButtons);
		glfwGetJoystickButtons(i, &aiButtons[0], oJoystick.m_iButtons);

		for (size_t j = 0; j < oJoystick.m_iButtons; j++)
		{
			unsigned long long iButtonMask = (1<<j);
			if (aiButtons[j] == GLFW_PRESS && !(oJoystick.m_aiButtonStates&iButtonMask))
				JoystickButtonPress(i, MapJoystickKey(j));
			else if (aiButtons[j] == GLFW_RELEASE && (oJoystick.m_aiButtonStates&iButtonMask))
				JoystickButtonRelease(i, MapJoystickKey(j));

			if (aiButtons[j] == GLFW_PRESS)
				oJoystick.m_aiButtonStates |= iButtonMask;
			else
				oJoystick.m_aiButtonStates &= ~iButtonMask;
		}
	}
}
Example #2
0
void CApplication::InitJoystickInput()
{
	g_aJoysticks.resize(MAX_JOYSTICKS);

	for (size_t i = 0; i < MAX_JOYSTICKS; i++)
	{
		if (glfwGetJoystickParam(GLFW_JOYSTICK_1 + i, GLFW_PRESENT) == GL_TRUE)
		{
			g_aJoysticks[i].m_bPresent = true;
			g_aJoysticks[i].m_aflAxis.resize(glfwGetJoystickParam(GLFW_JOYSTICK_1 + i, GLFW_AXES));

			for (size_t j = 0; j < g_aJoysticks[i].m_aflAxis.size(); j++)
				g_aJoysticks[i].m_aflAxis[j] = 0;

			g_aJoysticks[i].m_iButtons = glfwGetJoystickParam(GLFW_JOYSTICK_1 + i, GLFW_BUTTONS);
			g_aJoysticks[i].m_aiButtonStates = 0;

			TAssert(g_aJoysticks[i].m_iButtons < sizeof(g_aJoysticks[i].m_aiButtonStates)*8);
		}
	}
}
Example #3
0
                        // implementation: approximate gradient (if no analytic gradient provided)
                        void eval_grad(const tvector& x, tvector& g) const
                        {
                                // accuracy epsilon as defined in:
                                //      see "Numerical optimization", Nocedal & Wright, 2nd edition, p.197
                                const tscalar dx = std::cbrt(tscalar(10) * std::numeric_limits<tscalar>::epsilon());

                                const tsize n = size();

                                tvector xp = x, xn = x;

                                g.resize(n);
                                for (tsize i = 0; i < n; i ++)
                                {
                                        if (i > 0)
                                        {
                                                xp(i - 1) -= dx;
                                                xn(i - 1) += dx;
                                        }
                                        xp(i) += dx;
                                        xn(i) -= dx;

                                        g(i) = (m_op_fval(xp) - m_op_fval(xn)) / (xp(i) - xn(i));
                                }
                        }
Example #4
0
void LoadMesh(CConversionScene* pScene, size_t iMesh)
{
	TAssert(iMesh < pScene->GetNumMeshes());
	if (iMesh >= pScene->GetNumMeshes())
		return;

	// Reserve space for n+1, the last one represents the default material.
	g_aaflData.resize(pScene->GetNumMaterials()+1);

	tvector<Vector> avecPoints;
	tvector<size_t> aiPoints;

	CConversionMesh* pMesh = pScene->GetMesh(iMesh);

	for (size_t j = 0; j < pMesh->GetNumFaces(); j++)
	{
		CConversionFace* pFace = pMesh->GetFace(j);

		size_t iMaterial = pFace->m;
		if (iMaterial == ~0)
			iMaterial = pScene->GetNumMaterials();

		CConversionVertex* pVertex0 = pFace->GetVertex(0);
		CConversionVertex* pVertex1 = pFace->GetVertex(1);

		CConversionVertex* pLastVertex = pFace->GetVertex(pFace->GetNumVertices()-1);

		avecPoints.clear();
		aiPoints.clear();

		for (size_t t = 0; t < pFace->GetNumVertices(); t++)
		{
			avecPoints.push_back(pMesh->GetVertex(pFace->GetVertex(t)->v));
			aiPoints.push_back(t);
		}

		CConversionVertex* pVertex2;

		while (avecPoints.size() > 3)
		{
			size_t iEar = FindEar(avecPoints);
			size_t iLast = iEar==0?avecPoints.size()-1:iEar-1;
			size_t iNext = iEar==avecPoints.size()-1?0:iEar+1;

			pVertex0 = pFace->GetVertex(aiPoints[iLast]);
			pVertex1 = pFace->GetVertex(aiPoints[iEar]);
			pVertex2 = pFace->GetVertex(aiPoints[iNext]);

			AddVertex(iMaterial, pMesh->GetVertex(pVertex0->v), pMesh->GetUV(pVertex0->vu));
			AddVertex(iMaterial, pMesh->GetVertex(pVertex1->v), pMesh->GetUV(pVertex1->vu));
			AddVertex(iMaterial, pMesh->GetVertex(pVertex2->v), pMesh->GetUV(pVertex2->vu));

			avecPoints.erase(avecPoints.begin()+iEar);
			aiPoints.erase(aiPoints.begin()+iEar);
		}

		TAssert(aiPoints.size() == 3);
		if (aiPoints.size() != 3)
			continue;

		pVertex0 = pFace->GetVertex(aiPoints[0]);
		pVertex1 = pFace->GetVertex(aiPoints[1]);
		pVertex2 = pFace->GetVertex(aiPoints[2]);

		AddVertex(iMaterial, pMesh->GetVertex(pVertex0->v), pMesh->GetUV(pVertex0->vu));
		AddVertex(iMaterial, pMesh->GetVertex(pVertex1->v), pMesh->GetUV(pVertex1->vu));
		AddVertex(iMaterial, pMesh->GetVertex(pVertex2->v), pMesh->GetUV(pVertex2->vu));
	}
}