Example #1
0
void
arrangement::compute_criticalCurves_type_II()
{
    for (int i = 0; i < (int) convolutions_o.size(); ++i)
    {
        // for all convolution arrangements
        Arrangement_2::Edge_iterator first = convolutions_o[i].edges_begin();
        Arrangement_2::Edge_iterator previous = convolutions_o[i].edges_begin();
        bool flag = true;

        Arrangement_2 copy(convolutions_o[i]);
        Walk_pl walk_pl(copy);

        for (Arrangement_2::Edge_iterator edge = convolutions_o[i].edges_begin(); edge != convolutions_o[i].edges_end(); ++edge)
        {
            if (flag)
            {
                ++edge;
                flag = false;
            }

            if (previous->data().compare(edge->data()) != 0)
            {
                // add critical curve type II in the copy
                double x = CGAL::to_double(edge->curve().source().x());
                double y = CGAL::to_double(edge->curve().source().y());
                double radius = r1r2;
                Rat_point_2 center(x, y);
                Rat_circle_2 circle(center, radius * radius);
                Conic_curve_2 conic_arc(circle);
                insert(nonCriticalRegions, conic_arc);
            }

            previous = edge;
        }
        if (previous->data().compare(first->data()) != 0)
        {
            // add critical curve type II in the copy
            double x = CGAL::to_double(first->curve().source().x());
            double y = CGAL::to_double(first->curve().source().y());
            double radius = r1r2;
            Rat_point_2 center(x, y);
            Rat_circle_2 circle(center, radius * radius);
            Conic_curve_2 conic_arc(circle);
            insert(nonCriticalRegions, conic_arc);
        }

        // keep only wanted curves and put it in the arrangement
        for (Arrangement_2::Edge_iterator e = nonCriticalRegions.edges_begin(); e != nonCriticalRegions.edges_end(); ++e)
            if ((e->data().compare("") == 0))
                keep_arc(e, copy, walk_pl);
        for (Arrangement_2::Edge_iterator edge = convolutions_o[i].edges_begin(); edge != convolutions_o[i].edges_end(); ++edge)
            insert(nonCriticalRegions, edge->curve());
    }
}
Example #2
0
int main ()
{
  // Construct an arrangement containing three RED line segments.
  Arrangement_2     arr;
  Landmarks_pl      pl (arr);

  Segment_2         s1 (Point_2(-1, -1), Point_2(1, 3));
  Segment_2         s2 (Point_2(2, 0), Point_2(3, 3));
  Segment_2         s3 (Point_2(0, 3), Point_2(2, 5));

  insert (arr, Colored_segment_2 (s1, RED), pl);
  insert (arr, Colored_segment_2 (s2, RED), pl);
  insert (arr, Colored_segment_2 (s3, RED), pl);

  // Insert three BLUE line segments.
  Segment_2         s4 (Point_2(-1, 3), Point_2(4, 1));
  Segment_2         s5 (Point_2(-1, 0), Point_2(4, 1));
  Segment_2         s6 (Point_2(-2, 1), Point_2(1, 4));

  insert (arr, Colored_segment_2 (s4, BLUE), pl);
  insert (arr, Colored_segment_2 (s5, BLUE), pl);
  insert (arr, Colored_segment_2 (s6, BLUE), pl);

  // Go over all vertices and print just the ones corresponding to intersection
  // points between RED segments and BLUE segments. Note that we skip endpoints
  // of overlapping sections.
  Arrangement_2::Vertex_const_iterator   vit;
  Segment_color                          color;

  for (vit = arr.vertices_begin(); vit != arr.vertices_end(); ++vit) {
    // Go over the incident halfedges of the current vertex and examine their
    // colors.
    bool       has_red = false;
    bool       has_blue = false;

    Arrangement_2::Halfedge_around_vertex_const_circulator  eit, first;

    eit = first = vit->incident_halfedges();
    do {
      // Get the color of the current half-edge.
      if (eit->curve().data().size() == 1) {
        color = eit->curve().data().front();

        if (color == RED)
          has_red = true;
        else if (color == BLUE)
          has_blue = true;
      }

      ++eit;
    } while (eit != first);

    // Print the vertex only if incident RED and BLUE edges were found.
    if (has_red && has_blue)
    {
      std::cout << "Red-blue intersection at (" << vit->point() << ")"
                << std::endl;
    }
  }

  // Locate the edges that correspond to a red-blue overlap.
  Arrangement_2::Edge_iterator   eit;

  for (eit = arr.edges_begin(); eit != arr.edges_end(); ++eit)
  {
    // Go over the incident edges of the current vertex and examine their
    // colors.
    bool       has_red = false;
    bool       has_blue = false;

    Traits_2::Data_container::const_iterator       dit;

    for (dit = eit->curve().data().begin(); dit != eit->curve().data().end();
         ++dit)
    {
      if (*dit == RED)
        has_red = true;
      else if (*dit == BLUE)
        has_blue = true;
    }

    // Print the edge only if it corresponds to a red-blue overlap.
    if (has_red && has_blue)
      std::cout << "Red-blue overlap at [" << eit->curve() << "]"  << std::endl;
  }
  return 0;
}
Example #3
0
void
arrangement::compute_criticalCurves_type_I()
{
    double radius_1 = ((double)manipulator_diametre)/2.0;
    double radius_2 = ((double)target_diametre)/2.0;

    for (int i = 0; i < (int) convolutions_o.size(); ++i)
    {
        Arrangement_2 copy(convolutions_o[i]);
        Walk_pl walk_pl(copy);
        // Add the critical curves of type I.
        for (Arrangement_2::Edge_iterator edge = convolutions_o[i].edges_begin(); edge != convolutions_o[i].edges_end(); ++edge)
        {
            if (CGAL::COLLINEAR == edge->curve().orientation())
            {
                // Displaced a segment.
                Nt_traits nt_traits;
                Algebraic_ft factor = nt_traits.convert(Rational(radius_1) + Rational(radius_2));
                Conic_point_2 source = edge->curve().source();
                Conic_point_2 target = edge->curve().target();
                Algebraic_ft delta_x = target.x() - source.x();
                Algebraic_ft delta_y = target.y() - source.y();
                Algebraic_ft length = nt_traits.sqrt(delta_x * delta_x + delta_y * delta_y);
                Algebraic_ft translation_x = - factor * delta_y / length;
                Algebraic_ft translation_y = factor * delta_x / length;
                Conic_point_2 point_1(source.x() + translation_x, source.y() + translation_y);
                Conic_point_2 point_2(target.x() + translation_x, target.y() + translation_y);
                Algebraic_ft a = delta_y;
                Algebraic_ft b = - delta_x;
                Algebraic_ft c = factor * length + (source.y() * target.x() - source.x() * target.y());
                X_monotone_curve_2 x_monotone_curve(a, b, c, point_1, point_2);

                insert(nonCriticalRegions, x_monotone_curve);
            }
            else
            {
                // Displaces an arc.
                Rational two(2);

                Rational r = edge->curve().r();
                Rational u = edge->curve().u();
                Rational v = edge->curve().v();

                Nt_traits nt_traits;
                Rational x_center = - u / (two * r);
                Rational y_center = - v / (two * r);
                Rat_point_2 rat_center(x_center, y_center);
                Conic_point_2 center(nt_traits.convert(x_center), nt_traits.convert(y_center));

                Rational radius = Rational(radius_1) + two * Rational(radius_2);

                Algebraic_ft coefficient = nt_traits.convert(radius / Rational(radius_2));

                Conic_point_2 source_1 = edge->curve().source();
                Algebraic_ft x_source_2 = center.x() + coefficient * (source_1.x() - center.x());
                Algebraic_ft y_source_2 = center.y() + coefficient * (source_1.y() - center.y());
                Conic_point_2 source_2(x_source_2, y_source_2);

                Conic_point_2 target_1 = edge->curve().target();
                Algebraic_ft x_target_2 = center.x() + coefficient * (target_1.x() - center.x());
                Algebraic_ft y_target_2 = center.y() + coefficient * (target_1.y() - center.y());
                Conic_point_2 target_2(x_target_2, y_target_2);

                Rat_circle_2 circle(rat_center, radius * radius);
                Conic_curve_2 conic_arc(circle, CGAL::CLOCKWISE, source_2, target_2);

                insert(nonCriticalRegions, conic_arc);
            }
        }
        // keep only wanted curves and put it in the arrangement
        for (Arrangement_2::Edge_iterator e = nonCriticalRegions.edges_begin(); e != nonCriticalRegions.edges_end(); ++e)
            if ((e->data().compare("") == 0))
                keep_arc(e, copy, walk_pl);
        for (Arrangement_2::Edge_iterator edge = convolutions_o[i].edges_begin(); edge != convolutions_o[i].edges_end(); ++edge)
            insert(nonCriticalRegions, edge->curve());
    }

}