Example #1
0
void netcdf_write_blitz(NcVar *nc_var, blitz::Array<T, rank> const &val)
{
	long counts[rank];
	for (int i=0; i<rank; ++i) counts[i] = val.extent(i);
//printf("netcdf_write_blitz: %p %p\n", nc_var, val.data());
	nc_var->put(val.data(), counts);
}
Example #2
0
void GridDomain::global_to_local(
	blitz::Array<double,1> const &global,
	std::vector<blitz::Array<double,1>> &olocal)
{
	if (olocal.size() != this->num_local_indices) {
		fprintf(stderr, "MatrixDomainer::get_rows() had bad dimension 1 = %d (expected %ld)\n", olocal.extent(1), this->num_local_indices);
		throw std::exception();
	}

	for (auto ii = olocal.begin(); ii != olocal.end(); ++ii) {
		// Make sure it has the right dimensions
		if (olocal[i].extent(0) != global.extent(0)) {
			fprintf(stderr, "MatrixDomainer::get_rows() had bad dimension 0 = %d (expected %ld)\n", olocal.extent(0), global.extent(0));
			throw std::exception();
		}
	}


	// Copy out data, translating to local coordinates
	for (int j=0; j < global.extent(0); ++j) {
		int lindex[this->num_local_indices];
		this->global_to_local(global(j), lindex);
		for (int i=0; i<this->num_local_indices; ++i)
			olocal[i](j) = lindex[i];
	}
}
Example #3
0
void GmresWrapper<Rank>::ApplyOperator(blitz::Array<cplx, 1> &input, blitz::Array<cplx, 1> &output)
{
	if (Psi == 0)
	{
		throw std::runtime_error("Psi is 0");
	}
	if (TempPsi == 0)
	{
		throw std::runtime_error("TempPsi is 0");
	}

	//Map the 1d vectors to a a blitz array of correct shape
	DataVector shape = Psi->GetData().shape();
	DataVector stride = Psi->GetData().stride();
	DataArray inData(input.data(), shape, stride, blitz::neverDeleteData);
	DataArray inData2(input.data(), shape, stride, blitz::neverDeleteData);
	DataArray outData(output.data(), shape, stride, blitz::neverDeleteData);
	DataArray outData2(output.data(), shape, stride, blitz::neverDeleteData);
	outData = 0;

	//Set psi and tempPsi to point to correct vectorsbuffers
	DataArray oldData = Psi->GetData();
	DataArray oldTempData = TempPsi->GetData();
	Psi->SetData(inData);
	TempPsi->SetData(outData);

	OperatorCallback(Psi, TempPsi);

	//Restore the former buffers
	Psi->SetData(oldData);
	TempPsi->SetData(oldTempData);
}
Example #4
0
void mouse( int button, int state, int x, int y)
{
	//#define CLICK_SAVE_COLS
	#ifdef CLICK_SAVE_COLS
	
		int kw = 16;
		int xmin, xmax, ymin, ymax;
		
		xmin = std::max( 1, x - kw);
		ymin = std::max( 1, y - kw);
		xmax = std::min( x + kw, image.cols() - 1);
		ymax = std::min( y + kw, image.rows() - 1);
	
		std::ofstream of( "cluster_dat.hpp");
	
		if( !of)
			return;

		of << "const int num_pts = " << (xmax - xmin) * (ymax - ymin) * 4 << ";\n";
		of << "float dat[num_pts] = {\n";
	
		for( int j=ymin;j<ymax;++j)
		{
			for( int i=xmin;i<xmax;++i)
			{
				Imath::Color3f col = image( j, i);
				of << col.x << ", " << col.y << ", " << col.z << ", 1.0, \n";
			}
		}

		of << "};\n";
	#endif
}
Example #5
0
double bob::learn::em::GMMMachine::logLikelihood(const blitz::Array<double, 1> &x,
  blitz::Array<double,1> &log_weighted_gaussian_likelihoods) const
{
  // Check dimension
  bob::core::array::assertSameDimensionLength(log_weighted_gaussian_likelihoods.extent(0), m_n_gaussians);
  bob::core::array::assertSameDimensionLength(x.extent(0), m_n_inputs);
  return logLikelihood_(x,log_weighted_gaussian_likelihoods);
}
Example #6
0
inline double Inverse_Matrix_with_lapack_and_Return_Determinant (blitz::Array<double,2> & M, std::string message="")
{  
  assert (M.rows() ==M.cols());
  int n = M.rows();
  if (n==0) return 1;
  ref<double,2> refM(M,false);//do not check the ordering since inverse and transposition commutes
  double * p = refM;
  return Inverse_Matrix_with_lapack_and_Return_Determinant(p,n,n,message);
}
Example #7
0
void IceModel_Decode::run_timestep(double time_s,
	blitz::Array<int,1> const &indices,
	std::map<IceField, blitz::Array<double,1>> const &vals2)
{
printf("BEGIN IceModel_Decode::run_timestep(%f) size=%ld\n", time_s, indices.size());
	std::map<IceField, blitz::Array<double,1>> vals2d;	/// Decoded fields

	// Loop through the fields we require
	std::set<IceField> fields;
	get_required_fields(fields);
	for (auto field = fields.begin(); field != fields.end(); ++field) {
printf("Looking for required field %s\n", field->str());

		// Look up the field we require
		auto ii = vals2.find(*field);
		if (ii == vals2.end()) {
			fprintf(stderr, "Cannot find required ice field = %s\n", field->str());
			throw std::exception();
		}
		blitz::Array<double,1> vals(ii->second);

		// Decode the field!
		blitz::Array<double,1> valsd(ndata());
		valsd = nan;
		int n = indices.size();
		for (int i=0; i < n; ++i) {
			int ix = indices(i);
			// Do our own bounds checking!
			if (ix < 0 || ix >= ndata()) {
				fprintf(stderr, "IceModel: index %d out of range [0, %d)\n", ix, ndata());
				throw std::exception();
			}

#if 0
			// Sanity check for NaN coming through
			if (std::isnan(vals(i))) {
				fprintf(stderr, "IceModel::decode: vals[%d] (index=%d) is NaN!\n", i, ix);
				throw std::exception();
			}
#endif

			// Add this value to existing field
			double &oval = valsd(ix);
			if (std::isnan(oval)) oval = vals(i);
			else oval += vals(i);
		}

		// Store decoded field in our output
		vals2d.insert(std::make_pair(*field, valsd));
printf("Done decoding required field, %s\n", field->str());
	}

	// Pass decoded fields on to subclass
	run_decoded(time_s, vals2d);
printf("END IceModel_Decode::run_timestep(%ld)\n", time_s);
}
Example #8
0
blitz::Array<double,1> bob::example::library::reverse (const blitz::Array<double,1>& array){
  // create new array in the desired shape
  blitz::Array<double,1> retval(array.shape());
  // copy data
  for (int i = 0, j = array.extent(0)-1; i < array.extent(0); ++i, --j){
    retval(j) = array(i);
  }
  // return the copied data
  return retval;
}
Example #9
0
  void Machine::setInputDivision (const blitz::Array<double,1>& v) {

    if (m_weight.extent(0) != v.extent(0)) {
      boost::format m("mismatch on the input division shape: expected a vector of size %d, but you input one with size = %d instead");
      m % m_weight.extent(0) % v.extent(0);
      throw std::runtime_error(m.str());
    }
    m_input_div.reference(bob::core::array::ccopy(v));

  }
Example #10
0
  void Machine::setBiases (const blitz::Array<double,1>& bias) {

    if (m_weight.extent(1) != bias.extent(0)) {
      boost::format m("mismatch on the bias shape: expected a vector of size %d, but you input one with size = %d instead");
      m % m_weight.extent(1) % bias.extent(0);
      throw std::runtime_error(m.str());
    }
    m_bias.reference(bob::core::array::ccopy(bias));

  }
Example #11
0
Mat naiveBlitzToCvMat(blitz::Array<float, 2> a, float multiplier){
	int i, j;
	Mat b = Mat(a.rows(), a.cols(), CV_32FC1);
	for (i=0; i< a.rows(); i++){
		for(j=0; j<a.cols(); j++){
			b.at<float>(i,j) = a(i, j) * multiplier;
		}
	}
	return b;
}
Example #12
0
void binary_save(const blitz::Array<T,n> & M,std::string filename)
{
  T z;assert(M.isStorageContiguous());
  std::stringstream f;M.dumpStructureInformation(f);
  std::ofstream out(filename.c_str(),std::ios::binary);
  std::string s = f.str();int i=int(s.length())+1;char c='1';
  out.write( (char*) &i,sizeof(i));
  out.write( (s.c_str()) ,i*sizeof(c));  
  out.write( (char*)M.dataFirst(),M.numElements()*sizeof(z));
}
Example #13
0
void convert2rgb( blitz::Array<Imath::Color3f,2>& img)
{
vigra::BasicImageView<vigra::TinyVector<float,3> > img_view( (vigra::TinyVector<float,3> *) img.dataFirst(), img.cols(), img.rows());

	for( int j=0;j<img.rows();++j)
		for( int i=0;i<img.cols();++i)
			img( j, i) *= lab_scale;

	vigra::transformImage( vigra::srcImageRange( img_view), vigra::destImage( img_view), vigra::Lab2RGBFunctor<float>( 1.0f));
}
Example #14
0
  inline void for_cons(const blitz::Array<T,n> & M, bool check_order){
    need_copy = (!(M.isStorageContiguous()));
    if (check_order) for (int i=0; i<n;i++) need_copy = (need_copy || (M.ordering(i)!=i));
#ifdef DEBUG_REF_WARNING
    if (need_copy) std::cout<<"WARNING : REF : COPY NEEDED. Performance will be degraded"<<std::endl;
#endif
    Mref = (blitz::Array<T,n> *)&M;
    // The copy has the same shape but is ordered like a fortran array
    if (need_copy) {Mcopy.resize(M.shape());Mcopy=M;}
  }
Example #15
0
void binary_load(blitz::Array<T,n> & M,std::string filename)
{
  assert(M.isStorageContiguous());T z;
  std::ifstream out(filename.c_str(),std::ios::binary);
  int i;char c='1';
  out.read( (char*) &i,sizeof(i));
  char *st = new char[i+1];
  out.read( st ,i*sizeof(c)); std::string s(st); 
  std::stringstream f;  M.dumpStructureInformation(f);
  if (f.str() != s) FATAL("Can not load binary : array do not conform. Structure (file vs array)"<<s<<"----"<<f.str());
  out.read( (char*)M.dataFirst(),M.numElements()*sizeof(z));
}
Example #16
0
 Machine::Machine(const blitz::Array<double,2>& weight)
   : m_input_sub(weight.extent(0)),
   m_input_div(weight.extent(0)),
   m_bias(weight.extent(1)),
   m_activation(boost::make_shared<bob::learn::activation::IdentityActivation>()),
   m_buffer(weight.extent(0))
 {
   m_input_sub = 0.0;
   m_input_div = 1.0;
   m_bias = 0.0;
   m_weight.reference(bob::core::array::ccopy(weight));
 }
Example #17
0
double bob::learn::em::GMMMachine::logLikelihood(const blitz::Array<double, 2> &x) const {
  // Check dimension
  bob::core::array::assertSameDimensionLength(x.extent(1), m_n_inputs);
  // Call the other logLikelihood_ (overloaded) function


  double sum_ll = 0;
  for (int i=0; i<x.extent(0); i++)
    sum_ll+= logLikelihood_(x(i,blitz::Range::all()));

  return sum_ll/x.extent(0);  
}
Example #18
0
void check_dimensions(
    std::string const &vname,
    blitz::Array<T, rank> const &arr,
    std::vector<int> const &dims)
{
    for (int i=0; i<rank; ++i) {
        if (dims[i] >= 0 && arr.extent(i) != dims[i]) {
            fprintf(stderr,
                    "Error in %s: expected dimension #%d = %d (is %d instead)\n",
                    vname.c_str(), i, dims[i], arr.extent(i));
            throw std::exception();
        }
    }
}
Example #19
0
  void Machine::forward (const blitz::Array<double,1>& input, blitz::Array<double,1>& output) const {

    if (m_weight.extent(0) != input.extent(0)) { //checks input dimension
      boost::format m("mismatch on the input dimension: expected a vector of size %d, but you input one with size = %d instead");
      m % m_weight.extent(0) % input.extent(0);
      throw std::runtime_error(m.str());
    }
    if (m_weight.extent(1) != output.extent(0)) { //checks output dimension
      boost::format m("mismatch on the output dimension: expected a vector of size %d, but you input one with size = %d instead");
      m % m_weight.extent(1) % output.extent(0);
      throw std::runtime_error(m.str());
    }
    forward_(input, output);

  }
Example #20
0
  void Machine::setWeights (const blitz::Array<double,2>& weight) {

    if (weight.extent(0) != m_input_sub.extent(0)) { //checks 1st dimension
      boost::format m("mismatch on the weight shape (number of rows): expected a weight matrix with %d row(s), but you input one with %d row(s) instead");
      m % m_input_sub.extent(0) % weight.extent(0);
      throw std::runtime_error(m.str());
    }
    if (weight.extent(1) != m_bias.extent(0)) { //checks 2nd dimension
      boost::format m("mismatch on the weight shape (number of columns): expected a weight matrix with %d column(s), but you input one with %d column(s) instead");
      m % m_bias.extent(0) % weight.extent(1);
      throw std::runtime_error(m.str());
    }
    m_weight.reference(bob::core::array::ccopy(weight));

  }
Example #21
0
double bob::math::det_(const blitz::Array<double,2>& A)
{
  // Size variable
  int N = A.extent(0);

  // Perform an LU decomposition
  blitz::Array<double,2> L(N,N);
  blitz::Array<double,2> U(N,N);
  blitz::Array<double,2> P(N,N);
  math::lu(A, L, U, P);

  // Compute the determinant of A = det(P*L)*PI(diag(U))
  //  where det(P*L) = +- 1 (Number of permutation in P)
  //  and PI(diag(U)) is the product of the diagonal elements of U
  blitz::Array<double,2> Lperm(N,N);
  math::prod(P,L,Lperm);
  int s = 1;
  double Udiag=1.;
  for (int i=0; i<N; ++i)
  {
    for (int j=i+1; j<N; ++j)
      if (P(i,j) > 0)
      {
        s = -s;
        break;
      }
    Udiag *= U(i,i);
  }

  return s*Udiag;
}
Example #22
0
double bob::learn::em::GMMMachine::logLikelihood(const blitz::Array<double, 1> &x) const {
  // Check dimension
  bob::core::array::assertSameDimensionLength(x.extent(0), m_n_inputs);
  // Call the other logLikelihood_ (overloaded) function
  // (log_weighted_gaussian_likelihoods will be discarded)
  return logLikelihood_(x,m_cache_log_weighted_gaussian_likelihoods);
}
Example #23
0
void bob::learn::em::GMMMachine::setVarianceThresholds(const blitz::Array<double, 2>& variance_thresholds) {
  bob::core::array::assertSameDimensionLength(variance_thresholds.extent(0), m_n_gaussians);
  bob::core::array::assertSameDimensionLength(variance_thresholds.extent(1), m_n_inputs);
  for(size_t i=0; i<m_n_gaussians; ++i)
    m_gaussians[i]->setVarianceThresholds(variance_thresholds(i,blitz::Range::all()));
  m_cache_supervector = false;
}
Example #24
0
double bob::math::slogdet_(const blitz::Array<double,2>& A, int& sign)
{
  // Size variable
  int N = A.extent(0);

  // Perform an LU decomposition
  blitz::Array<double,2> L(N,N);
  blitz::Array<double,2> U(N,N);
  blitz::Array<double,2> P(N,N);
  math::lu(A, L, U, P);

  // Compute the determinant of A = det(P*L)*SI(diag(U))
  //  where det(P*L) = +- 1 (Number of permutation in P)
  //  and SI(diag(log|U|)) is the sum of the logarithm of the
  //  diagonal elements of U
  blitz::Array<double,2> Lperm(N,N);
  math::prod(P,L,Lperm);
  sign = 1;
  double Udiag=0.;
  for (int i=0; i<N; ++i)
  {
    for (int j=i+1; j<N; ++j)
      if (P(i,j) > 0)
      {
        sign = -sign;
        break;
      }
    Udiag += log(fabs(U(i,i)));
  }
  // Check for infinity
  if ((Udiag*-1) == std::numeric_limits<double>::infinity())
    sign = 0;

  return Udiag;
}
Example #25
0
void bob::learn::em::GMMMachine::setMeans(const blitz::Array<double,2> &means) {
  bob::core::array::assertSameDimensionLength(means.extent(0), m_n_gaussians);
  bob::core::array::assertSameDimensionLength(means.extent(1), m_n_inputs);
  for(size_t i=0; i<m_n_gaussians; ++i)
    m_gaussians[i]->updateMean() = means(i,blitz::Range::all());
  m_cache_supervector = false;
}
void bob::learn::boosting::LUTTrainer::weightedHistogram(const blitz::Array<uint16_t,1>& features, const blitz::Array<double,1>& weights) const{
  bob::core::array::assertSameShape(features, weights);
  _gradientHistogram = 0.;
  for (int i = features.extent(0); i--;){
    _gradientHistogram((int)features(i)) += weights(i);
  }
}
Example #27
0
void bob::learn::em::GMMMachine::setVarianceSupervector(const blitz::Array<double,1> &variance_supervector) {
  bob::core::array::assertSameDimensionLength(variance_supervector.extent(0), m_n_gaussians*m_n_inputs);
  for(size_t i=0; i<m_n_gaussians; ++i) {
    m_gaussians[i]->updateVariance() = variance_supervector(blitz::Range(i*m_n_inputs, (i+1)*m_n_inputs-1));
    m_gaussians[i]->applyVarianceThresholds();
  }
  m_cache_supervector = false;
}
Example #28
0
void gl_init( void)
{
	glPixelStorei ( GL_UNPACK_ALIGNMENT, 1 );
	glClearColor ( 0.0F, 0.0F, 0.0F, 0.0F );

	glViewport ( 0, 0, image.cols(), image.rows());

   // set coordinate frame for graphics in window
	glMatrixMode ( GL_PROJECTION );
	glLoadIdentity();

	gluOrtho2D ( 0, image.cols(), image.rows(), 0);
	glMatrixMode ( GL_MODELVIEW);
	glLoadIdentity();
		
	glPixelZoom( 1, -1);
}
Example #29
0
void bob::learn::em::GMMMachine::accStatistics_(const blitz::Array<double,2>& input, bob::learn::em::GMMStats& stats) const {
  // iterate over data
  blitz::Range a = blitz::Range::all();
  for(int i=0; i<input.extent(0); ++i) {
    // Get example
    blitz::Array<double,1> x(input(i, a));
    // Accumulate statistics
    accStatistics_(x,stats);
  }
}
int32_t bob::learn::boosting::LUTTrainer::bestIndex(const blitz::Array<double,1>& array) const{
  double min = std::numeric_limits<double>::max();
  int32_t minIndex = -1;
  for (int i = 0; i < array.extent(0); ++i){
    if (array(i) < min){
      min = array(i);
      minIndex = i;
    }
  }
  return minIndex;
}