static void
skillgui_cairo_render_bezier(GVJ_t * job, pointf * A, int n, int arrow_at_start,
		int arrow_at_end, int filled)
{
#ifdef USE_GVPLUGIN_TIMETRACKER
  __tt.ping_start(__ttc_bezier);
  ++__num_bezier;
#endif
  //printf("Bezier\n");
  SkillGuiCairoRenderInstructor *cri = (SkillGuiCairoRenderInstructor *)job->context;
  Cairo::RefPtr<Cairo::Context> cairo = cri->get_cairo();
  obj_state_t *obj = job->obj;

  skillgui_cairo_set_penstyle(cairo, job);

  cairo->move_to(A[0].x, -A[0].y);
  for (int i = 1; i < n; i += 3)
    cairo->curve_to(A[i].x, -A[i].y, A[i + 1].x, -A[i + 1].y,
		    A[i + 2].x, -A[i + 2].y);
  if (filled) {
    skillgui_cairo_set_color(cairo, &(obj->fillcolor));
    cairo->fill_preserve();
  }
  skillgui_cairo_set_color(cairo, &(obj->pencolor));
  cairo->stroke();

#ifdef USE_GVPLUGIN_TIMETRACKER
  __tt.ping_end(__ttc_bezier);
#endif
}
Example #2
0
void DependencyArrow::draw(const Cairo::RefPtr<Cairo::Context>& context) const
{
    // the way to compute the (tcx, tcy) single control point of the
    // quadratic
    double dX = mControlPoint.getX() - mOrigin->getX();
    double dY = mControlPoint.getY() - mOrigin->getY();
    double d1 = std::sqrt(dX * dX + dY * dY);
    double d = d1;

    dX = mDestination->getX() - mControlPoint.getX();
    dY = mDestination->getY() - mControlPoint.getY();
    d += std::sqrt(dX * dX + dY * dY);
    double t = d1/d;

    double t1 = 1.0 - t;
    double tSq = t * t;
    double denom = 2.0 * t * t1;

    double tcx = (mControlPoint.getX() - t1 * t1 * mOrigin->getX() -
        tSq * mDestination->getX()) / denom;
    double tcy = (mControlPoint.getY() - t1 * t1 * mOrigin->getY() -
        tSq * mDestination->getY()) / denom;

    // from the single point of the quadratic to the both of the cubic
    double tcxq1 = mOrigin->getX() + 2. * (tcx - mOrigin->getX()) / 3.;
    double tcyq1 = mOrigin->getY() + 2. * (tcy - mOrigin->getY()) / 3.;
    double tcxq2 = mDestination->getX() +
        2. * (tcx - mDestination->getX()) / 3.;
    double tcyq2 = mDestination->getY() +
        2. * (tcy - mDestination->getY()) / 3.;

    // and now to draw,
    std::valarray< double > dashes(2);
    double angle = atan2 (mDestination->getY() - tcyq2,
        mDestination->getX() - tcxq2) + M_PI;
    double x1 = mDestination->getX() + 9 * std::cos(angle - 0.35);
    double y1 = mDestination->getY() + 9 * std::sin(angle - 0.35);
    double x2 = mDestination->getX() + 9 * std::cos(angle + 0.35);
    double y2 = mDestination->getY() + 9 * std::sin(angle + 0.35);
    dashes[0] = 8.0;
    dashes[1] = 3.0;

    context->save();
    context->set_line_width(1);
    context->move_to(mDestination->getX(), mDestination->getY());
    context->line_to(x1,y1);
    context->line_to(x2,y2);
    context->line_to(mDestination->getX(), mDestination->getY());
    context->fill();

    context->set_dash(dashes,0.);
    context->move_to(mOrigin->getX(), mOrigin->getY());
    context->curve_to(tcxq1, tcyq1, tcxq2, tcyq2, mDestination->getX(),
        mDestination->getY());
    context->stroke();
    context->restore();
}
Example #3
0
/**
 * Draws a curve for the speed graph.
 */
void GtkGraph::draw(std::queue<double> q, double height, double increment, double maxValue, const Cairo::RefPtr<Cairo::Context>& cr)
{
	// wizards use computers
	// computers use numbers
	// no magic
	
	double offset = increment * (m_displaySize - q.size());

	cr->move_to(0, height);
	for(unsigned i = 0; i< (m_displaySize - q.size());++i)
		cr->line_to(i*increment, height);


	double oldy;
	if(q.empty()) return;

	oldy = height - (q.front() * height / maxValue);
	cr->line_to(offset, oldy);
	q.pop();
	double x = increment + offset;
	while(!q.empty())
	{
		double y = height - (q.front() * height / maxValue);
		cr->curve_to(x - increment/2, oldy, x - increment/2, y, x, y);
		q.pop();
		oldy = y;
		x += increment;
	}

	if(gt::Settings::settings["GraphStyle"] == "Fill")
	{
		cr->stroke_preserve();
		Gdk::Cairo::set_source_rgba(cr, Gdk::RGBA(gt::Settings::settings[(upl) ? "GraphUploadFillColor" : "GraphDownloadFillColor"]));
		cr->line_to(x - increment, height);
		cr->line_to(0,height);
		auto k = Gdk::RGBA(gt::Settings::settings[(upl) ? "GraphUploadFillColor" : "GraphDownloadFillColor"]);
		cr->set_source_rgba(k.get_red(), k.get_green(), k.get_blue(), k.get_alpha() * 0.5);
		cr->fill();
	}
	else cr->stroke();
}
void FrequencyGraph( Cairo::RefPtr<Cairo::Context> cr, bool active, float x, float y, float xS, float yS, EqualizerState state)
{
    cr->set_line_cap( Cairo::LINE_CAP_ROUND );
    cr->set_line_join( Cairo::LINE_JOIN_ROUND);

    int xSize = xS;
    int ySize = yS;

    // works but a bit simple
    cr -> move_to( x        , y         );
    cr -> line_to( x + xSize, y         );
    cr -> line_to( x + xSize, y + ySize );
    cr -> line_to( x        , y + ySize );
    cr -> close_path();

    // Draw outline shape
    cr -> set_source_rgb (0.1,0.1,0.1);
    cr -> fill();

    // draw "frequency guides"
    std::valarray< double > dashes(2);
    dashes[0] = 2.0;
    dashes[1] = 2.0;
    cr->set_dash (dashes, 0.0);
    cr->set_line_width(1.0);
    cr->set_source_rgb (0.4,0.4,0.4);
    for ( int i = 0; i < 4; i++ )
    {
        cr->move_to( x + ((xSize / 4.f)*i), y );
        cr->line_to( x + ((xSize / 4.f)*i), y + ySize );
    }
    for ( int i = 0; i < 4; i++ )
    {
        cr->move_to( x       , y + ((ySize / 4.f)*i) );
        cr->line_to( x +xSize, y + ((ySize / 4.f)*i) );
    }
    cr->stroke();
    cr->unset_dash();

    // set colour based on active or not
    if ( active )
        setColour(cr, COLOUR_BLUE_1, 0.2 );
    else
        setColour(cr, COLOUR_GREY_1, 0.2 );

    int tmpX = x;
    int tmpY = y;

    // precalculate some variables
    float oldGainPix = (ySize / 60.f) * (state.gain[0] - 0.5 ) * 40;
    float oldXLoc = 0;
    float qPix = ((xSize * 0.2) / 3.f );
    //float oldCutoff = 0;

    // move to bottom left, draw line to middle left
    cr->move_to( tmpX, tmpY + ySize         );
    cr->line_to( tmpX, tmpY + (ySize * 0.5) - oldGainPix );


    for ( int i = 0; i < 4; i++ )
    {
        //float cutoff = state.cutoffFreq[i] / 20000;


        float gainPix = (ySize / 60.f) * (state.gain[i] - 0.5 ) * 40;

        float xLoc = xSize * 0.2 * (i+1);

        //std::cout << "I: " << i << "  GainPix: " << gainPix << "  tmpY - gainPix" << tmpY - gainPix << std::endl;


        cr->curve_to( tmpX + oldXLoc + qPix, tmpY + (ySize * 0.5) - oldGainPix ,// control point 1
                      tmpX + xLoc - qPix   , tmpY + (ySize * 0.5) - gainPix ,   // control point 2
                      tmpX + xLoc          , tmpY + (ySize * 0.5) - gainPix );  // end of curve

        // update variables for next iter
        oldGainPix = gainPix;
        oldXLoc = xLoc;
        //oldCutoff = cutoff;
    }

    // last bit of curve to the right edge
    cr->curve_to( tmpX + oldXLoc + qPix, tmpY + (ySize * 0.5) - oldGainPix,   // control point 1
                  tmpX + xSize   - qPix, tmpY + (ySize * 0.5) - oldGainPix,   // control point 2
                  tmpX + xSize         , tmpY + (ySize * 0.5) - oldGainPix);  // end of curve


    cr->line_to( tmpX + xSize , tmpY + ySize );
    cr->close_path();
    cr->fill_preserve();

    cr->set_line_width(2.5);
    if ( active )
        setColour(cr, COLOUR_BLUE_1 );
    else
        setColour(cr, COLOUR_GREY_1 );
    cr->stroke();

    // outline
    cr->rectangle( x, y , xS, yS );
    cr->set_line_width(3);
    if ( active )
        setColour(cr, COLOUR_GREY_2 );
    else
        setColour(cr, COLOUR_GREY_3 );
    cr->stroke();

    //std::cout << "LupppWidget::FrequencyGraph() called!" << std::endl;
}
Example #5
0
/*
 * draw edges bundled.  That is, edges are drawn as splines, with the control points
 * between adjacent edges outgoing from a particular node shared if the angle between them
 * is less than pi/8
 */
void OutputFile::draw_curved_edges(Cairo::RefPtr<Cairo::Context> &cr,
        vector<cola::Edge> const & es, 
        const double xmin, 
        const double ymin) {
    using namespace bundles;
    vector<CNode> nodes(rs.size());
    vector<CEdge> edges(es.size());
    for (unsigned i=0;i<es.size();i++) {
        CEdge *e=&edges[i];
        unsigned start=es[i].first;
        unsigned end=es[i].second;
        e->startID=start;
        e->endID=end;
        nodes[start].x=rs[start]->getCentreX()-xmin;
        nodes[start].y=rs[start]->getCentreY()-ymin;
        nodes[end].x=rs[end]->getCentreX()-xmin;
        nodes[end].y=rs[end]->getCentreY()-ymin;
        e->x0=nodes[start].x;
        e->x1=nodes[start].x;
        e->x2=nodes[end].x;
        e->x3=nodes[end].x;
        e->y0=nodes[start].y;
        e->y1=nodes[start].y;
        e->y2=nodes[end].y;
        e->y3=nodes[end].y;
        nodes[end].edges.push_back(e);
        nodes[start].edges.push_back(e);
    }

    for (unsigned i=0;i<nodes.size();i++) {
        CNode u=nodes[i];
        if(u.edges.size()<2) continue;
        for (unsigned j=0;j<u.edges.size();j++) {
            CBundle* b=new CBundle(u);
            b->addEdge(u.edges[j]);
            u.bundles.push_back(b);
        }
        u.bundles.sort(clockwise());
        /*
        printf("Sorted:  \n");
        list<CBundle*>::iterator i,j;
        for(list<CBundle*>::iterator i=u.bundles.begin();i!=u.bundles.end();i++) {
                CBundle* a=*i;
                a->dump();
                printf("  angle=%f\n",a->yangle());
        }
        printf("---------\n");
        */
        while(true) {
            double minAngle=DBL_MAX;
            list<CBundle*>::iterator mini,minj,i,j;
            for(i=u.bundles.begin();i!=u.bundles.end();i++) {
                j=i;
                if(++j==u.bundles.end()) {
                    j=u.bundles.begin(); 
                }
                CBundle* a=*i;
                CBundle* b=*j;
                double angle=b->yangle()-a->yangle();
                if(angle<0) angle+=2*M_PI;
                //printf("between ");
                //a->dump(); b->dump();
                //printf(" angle=%f\n",angle);
                if(angle<minAngle) {
                    minAngle=angle;
                    mini=i;
                    minj=j;
                }
            }
            if(minAngle>cos(M_PI/8.)) break;
            CBundle* a=*mini;
            CBundle* b=*minj;
            //a->dump();
            //b->dump();
            b->merge(a);
            //printf("***Merged on %f***: ",minAngle);
            //b->dump();
            //printf("\n");
            u.bundles.erase(mini);
            if(u.bundles.size() < 2) break;
        }
        for(list<CBundle*>::iterator i=u.bundles.begin();i!=u.bundles.end();i++) {
            CBundle* b=*i;
            for(unsigned i=0;i<b->edges.size();i++) {
                CEdge* e=b->edges[i];
                if(e->x0==u.x&&e->y0==u.y) {
                    e->x1=b->x1();
                    e->y1=b->y1();
                } else {
                    e->x2=b->x1();
                    e->y2=b->y1();
                }
            }
        }
    }

    cr->save();
    // background
    cr->set_source_rgba(0,0,1,0.2);
    for (unsigned i=0;i<edges.size();i++) {
        CEdge &e=edges[i];
        cr->move_to(e.x0,e.y0);
        cr->curve_to(e.x1,e.y1,e.x2,e.y2,e.x3,e.y3);
        cr->stroke();
    }
    cr->restore();
}
Example #6
0
void
Renderer_Ducks::render_vfunc(
	const Glib::RefPtr<Gdk::Drawable>& drawable,
	const Gdk::Rectangle& /*expose_area*/
)
{
	assert(get_work_area());
	if(!get_work_area())
		return;

	const synfig::Point window_start(get_work_area()->get_window_tl());
	const float pw(get_pw()),ph(get_ph());

	const bool solid_lines(get_work_area()->solid_lines);
	bool alternative = get_work_area()->get_alternative_mode();

	const std::list<etl::handle<Duckmatic::Bezier> >& bezier_list(get_work_area()->bezier_list());
	const std::list<handle<Duckmatic::Stroke> >& stroke_list(get_work_area()->stroke_list());
	Glib::RefPtr<Pango::Layout> layout(Pango::Layout::create(get_work_area()->get_pango_context()));

	Cairo::RefPtr<Cairo::Context> cr = drawable->create_cairo_context();

	cr->save();
	cr->set_line_cap(Cairo::LINE_CAP_BUTT);
	cr->set_line_join(Cairo::LINE_JOIN_MITER);

	// Render the strokes
	for(std::list<handle<Duckmatic::Stroke> >::const_iterator iter=stroke_list.begin();iter!=stroke_list.end();++iter)
	{
		cr->save();

		std::list<synfig::Point>::iterator iter2;
		for(iter2=(*iter)->stroke_data->begin();iter2!=(*iter)->stroke_data->end();++iter2)
		{
			cr->line_to(
				((*iter2)[0]-window_start[0])/pw,
				((*iter2)[1]-window_start[1])/ph
				);
		}

		cr->set_line_width(1.0);
		cr->set_source_rgb(
			colorconv_synfig2gdk((*iter)->color).get_red_p(),
			colorconv_synfig2gdk((*iter)->color).get_green_p(),
			colorconv_synfig2gdk((*iter)->color).get_blue_p()
			);
		cr->stroke();

		cr->restore();
	}



	// Render the beziers
	for(std::list<handle<Duckmatic::Bezier> >::const_iterator iter=bezier_list.begin();iter!=bezier_list.end();++iter)
	{
		Point p1((*iter)->p1->get_trans_point()-window_start);
		Point p2((*iter)->p2->get_trans_point()-window_start);
		Point c1((*iter)->c1->get_trans_point()-window_start);
		Point c2((*iter)->c2->get_trans_point()-window_start);
		p1[0]/=pw;p1[1]/=ph;
		p2[0]/=pw;p2[1]/=ph;
		c1[0]/=pw;c1[1]/=ph;
		c2[0]/=pw;c2[1]/=ph;

		cr->save();

		cr->move_to(p1[0], p1[1]);
		cr->curve_to(c1[0], c1[1], c2[0], c2[1], p2[0], p2[1]);

/*
		if (solid_lines)
		{
			cr->set_source_rgb(0,0,0); // DUCK_COLOR_BEZIER_1
			cr->set_line_width(3.0);
			cr->stroke_preserve();

			cr->set_source_rgb(175.0/255.0,175.0/255.0,175.0/255.0); //DUCK_COLOR_BEZIER_2
			cr->set_line_width(1.0);
			cr->stroke();
		}
		else
*/
		{
			//Solid line background
			cr->set_line_width(1.0);
			cr->set_source_rgb(0,0,0); // DUCK_COLOR_BEZIER_1
			cr->stroke_preserve();

			//Dashes
			cr->set_source_rgb(175.0/255.0,175.0/255.0,175.0/255.0); //DUCK_COLOR_BEZIER_2
			std::valarray<double> dashes(2);
			dashes[0]=5.0;
			dashes[1]=5.0;
			cr->set_dash(dashes, 0);
			cr->stroke();
		}
		cr->restore();
	}


	const DuckList duck_list(get_work_area()->get_duck_list());

	std::list<ScreenDuck> screen_duck_list;
	const float radius((abs(pw)+abs(ph))*4);

	etl::handle<Duck> hover_duck(get_work_area()->find_duck(get_work_area()->get_cursor_pos(),radius, get_work_area()->get_type_mask()));

	// Render the ducks
	for(std::list<handle<Duck> >::const_iterator iter=duck_list.begin();iter!=duck_list.end();++iter)
	{

		// If this type of duck has been masked, then skip it
		if(!(*iter)->get_type() || (!(get_work_area()->get_type_mask() & (*iter)->get_type())))
			continue;

		Point sub_trans_point((*iter)->get_sub_trans_point());
		Point sub_trans_origin((*iter)->get_sub_trans_origin());

		if (App::restrict_radius_ducks &&
			(*iter)->is_radius())
		{
			if (sub_trans_point[0] < sub_trans_origin[0])
				sub_trans_point[0] = sub_trans_origin[0];
			if (sub_trans_point[1] < sub_trans_origin[1])
				sub_trans_point[1] = sub_trans_origin[1];
		}

		Point point((*iter)->get_transform_stack().perform(sub_trans_point));
		Point origin((*iter)->get_transform_stack().perform(sub_trans_origin));

		point[0]=(point[0]-window_start[0])/pw;
		point[1]=(point[1]-window_start[1])/ph;

		bool has_connect = (*iter)->get_tangent()
		                || ((*iter)->get_type()&( Duck::TYPE_ANGLE
		                					   | Duck::TYPE_SKEW
		        		                       | Duck::TYPE_SCALE_X
		        		                       | Duck::TYPE_SCALE_Y ));
		if((*iter)->get_connect_duck())
		{
			has_connect=true;
			origin=(*iter)->get_connect_duck()->get_trans_point();
		}

		origin[0]=(origin[0]-window_start[0])/pw;
		origin[1]=(origin[1]-window_start[1])/ph;

		bool selected(get_work_area()->duck_is_selected(*iter));
		bool hover(*iter==hover_duck || (*iter)->get_hover());

		if(get_work_area()->get_selected_value_node())
		{
			synfigapp::ValueDesc value_desc((*iter)->get_value_desc());
			if (value_desc.is_valid() &&
				((value_desc.is_value_node()		&& get_work_area()->get_selected_value_node() == value_desc.get_value_node()) ||
				 (value_desc.parent_is_value_node()	&& get_work_area()->get_selected_value_node() == value_desc.get_parent_value_node())))
			{
				cr->save();

				cr->rectangle(
					round_to_int(point[0]-5),
					round_to_int(point[1]-5),
					10,
					10
					);

				cr->set_line_width(2.0);
				cr->set_source_rgb(1, 0, 0); //DUCK_COLOR_SELECTED
				cr->stroke();

				cr->restore();
			}

		}

		if((*iter)->get_box_duck())
		{
			Point boxpoint((*iter)->get_box_duck()->get_trans_point());
			boxpoint[0]=(boxpoint[0]-window_start[0])/pw;
			boxpoint[1]=(boxpoint[1]-window_start[1])/ph;
			Point tl(min(point[0],boxpoint[0]),min(point[1],boxpoint[1]));

			cr->save();

			cr->rectangle(
				round_to_int(tl[0]),
				round_to_int(tl[1]),
				round_to_int(abs(boxpoint[0]-point[0])),
				round_to_int(abs(boxpoint[1]-point[1]))
				);

			// Solid white box
			cr->set_line_width(1.0);
			cr->set_source_rgb(1,1,1); //DUCK_COLOR_BOX_1
			cr->stroke_preserve();

			// Dashes
			cr->set_source_rgb(0,0,0); //DUCK_COLOR_BOX_2
			std::valarray<double> dashes(2);
			dashes[0]=5.0;
			dashes[1]=5.0;
			cr->set_dash(dashes, 0);
			cr->stroke();

			cr->restore();
		}

		if((*iter)->is_axes_tracks())
		{
			Point pos((*iter)->get_point());
			Point points[] = {
				(*iter)->get_sub_trans_origin(),
				(*iter)->get_sub_trans_point(Point(pos[0],0)),
				(*iter)->get_sub_trans_point(),
				(*iter)->get_sub_trans_point(Point(0,pos[1])),
				(*iter)->get_sub_trans_origin()
			};

			cr->save();

			for(int i = 0; i < 5; i++) {
				Point p((*iter)->get_transform_stack().perform(points[i]));
				Real x = (p[0]-window_start[0])/pw;
				Real y = (p[1]-window_start[1])/ph;
				if (i == 0) cr->move_to(x, y); else cr->line_to(x, y);
			}

			// Solid white box
			cr->set_line_width(1.0);
			cr->set_source_rgb(1,1,1); //DUCK_COLOR_BOX_1
			cr->stroke_preserve();

			// Dashes
			cr->set_source_rgb(0,0,0); //DUCK_COLOR_BOX_2
			std::valarray<double> dashes(2);
			dashes[0]=5.0;
			dashes[1]=5.0;
			cr->set_dash(dashes, 0);
			cr->stroke();

			cr->restore();
		}

		ScreenDuck screen_duck;
		screen_duck.pos=point;
		screen_duck.selected=selected;
		screen_duck.hover=hover;
		screen_duck.has_alternative=(*iter)->get_alternative_value_desc().is_valid();

		if(!(*iter)->get_editable(alternative))
			screen_duck.color=(DUCK_COLOR_NOT_EDITABLE);
		else if((*iter)->get_tangent())
			if(0){
				// Tangents have different color depending on the split state (disabled for now)
				//
				// Check if we can reach the canvas and set the time to
				// evaluate the split value accordingly
				synfig::Canvas::Handle canvas_h(get_work_area()->get_canvas());
				synfig::Time time(canvas_h?canvas_h->get_time():synfig::Time(0));
				// Retrieve the split value of the bline point.
				const synfigapp::ValueDesc& v_d((*iter)->get_value_desc());
				synfig::LinkableValueNode::Handle parent;
				if(v_d.parent_is_linkable_value_node())
				{
					parent=v_d.get_parent_value_node();
					bool split;
					synfig::ValueNode::Handle child(parent->get_link("split"));
					if(synfig::ValueNode_Animated::Handle::cast_dynamic(child))
					{
						synfig::ValueNode_Animated::Handle animated_child(synfig::ValueNode_Animated::Handle::cast_dynamic(child));
						split=animated_child->new_waypoint_at_time(time).get_value(time).get(split);
					}
					else if(synfig::ValueNode_Const::Handle::cast_dynamic(child))
					{
						synfig::ValueNode_Const::Handle const_child(synfig::ValueNode_Const::Handle::cast_dynamic(child));
						split=(const_child->get_value()).get(split);
					}
					screen_duck.color=(split? DUCK_COLOR_TANGENT_2 : DUCK_COLOR_TANGENT_1);
				}
				else
					screen_duck.color=DUCK_COLOR_TANGENT_1;
			} else {
				// All tangents are the same color
				screen_duck.color=((*iter)->get_scalar()<0 ? DUCK_COLOR_TANGENT_1 : DUCK_COLOR_TANGENT_1);
			}
		else if((*iter)->get_type()&Duck::TYPE_VERTEX)
			screen_duck.color=DUCK_COLOR_VERTEX;
		else if((*iter)->get_type()&Duck::TYPE_RADIUS)
			screen_duck.color=((*iter)->is_linear() ? DUCK_COLOR_LINEAR : DUCK_COLOR_RADIUS);
		else if((*iter)->get_type()&Duck::TYPE_WIDTH)
			screen_duck.color=DUCK_COLOR_WIDTH;
		else if((*iter)->get_type()&Duck::TYPE_ANGLE)
			screen_duck.color=(DUCK_COLOR_ANGLE);
		else if((*iter)->get_type()&Duck::TYPE_WIDTHPOINT_POSITION)
			screen_duck.color=(DUCK_COLOR_WIDTHPOINT_POSITION);
		else
			screen_duck.color=DUCK_COLOR_OTHER;

		screen_duck_list.push_front(screen_duck);

		if(has_connect)
		{
			cr->save();

			cr->move_to(origin[0], origin[1]);
			cr->line_to(point[0], point[1]);

			if(solid_lines)
			{
				// Outside
				cr->set_line_width(3.0);
				cr->set_source_rgb(0,0,0); //DUCK_COLOR_CONNECT_OUTSIDE
				cr->stroke_preserve();

				// Inside
				cr->set_line_width(1.0);
				cr->set_source_rgb(159.0/255,239.0/255,239.0/255); //DUCK_COLOR_CONNECT_INSIDE
				cr->stroke();
			}
			else
			{
				// White background
				cr->set_line_width(1.0);
				cr->set_source_rgb(0,0,0); //DUCK_COLOR_CONNECT_OUTSIDE
				cr->stroke_preserve();

				// Dashes on top of the background
				cr->set_source_rgb(159.0/255,239.0/255,239.0/255); //DUCK_COLOR_CONNECT_INSIDE
				std::valarray<double> dashes(2);
				dashes[0]=5.0;
				dashes[1]=5.0;
				cr->set_dash(dashes, 0);
				cr->stroke();
			}

			cr->restore();
		}

		if((*iter)->is_radius())
		{
			if (!(*iter)->is_linear())
			{
				const Real mag((point-origin).mag());

				cr->save();

				cr->arc(
					origin[0],
					origin[1],
					mag,
					0,
					M_PI*2
					);

				if(solid_lines)
				{
					cr->set_line_width(3.0);
					cr->set_source_rgb(0,0,0);
					cr->stroke_preserve();

					cr->set_source_rgb(175.0/255.0,175.0/255.0,175.0/255.0);
				}
				else
				{
					cr->set_source_rgb(1.0,1.0,1.0);

					// Operator difference was added in Cairo 1.9.4
					// It currently isn't supported by Cairomm
	#if CAIRO_VERSION >= 10904
					cairo_set_operator(cr->cobj(), CAIRO_OPERATOR_DIFFERENCE);
	#else
					// Fallback: set color to black
					cr->set_source_rgb(0,0,0);
	#endif

				}

				cr->set_line_width(1.0);
				cr->stroke();

				cr->restore();
			}

			if(hover)
			{
				Real mag;
				if ((*iter)->get_exponential()){
					mag = log((*iter)->get_point().mag());
				}
				else if (App::restrict_radius_ducks)
				{
					Point sub_trans_point((*iter)->get_sub_trans_point());
					Point sub_trans_origin((*iter)->get_sub_trans_origin());

					if (sub_trans_point[0] < sub_trans_origin[0])
						sub_trans_point[0] = sub_trans_origin[0];
					if (sub_trans_point[1] < sub_trans_origin[1])
						sub_trans_point[1] = sub_trans_origin[1];

					Point point((*iter)->get_transform_stack().perform(sub_trans_point));
					Point origin((*iter)->get_transform_stack().perform(sub_trans_origin));

					mag = (point-origin).mag();
				}
				else
					mag = ((*iter)->get_trans_point()-(*iter)->get_trans_origin()).mag();

				Distance real_mag(mag, Distance::SYSTEM_UNITS);
				if (!(*iter)->get_exponential())
					real_mag.convert(App::distance_system,get_work_area()->get_rend_desc());

				cr->save();

				layout->set_text(real_mag.get_string());

				cr->set_source_rgb(0,0,0); // DUCK_COLOR_WIDTH_TEXT_1
				cr->move_to(
					point[0]+1+6,
					point[1]+1-8
					);
				layout->show_in_cairo_context(cr);
				cr->stroke();


				cr->set_source_rgb(1,0,1); // DUCK_COLOR_WIDTH_TEXT_2
				cr->move_to(
					point[0]+6,
					point[1]-8
					);
				layout->show_in_cairo_context(cr);
				cr->stroke();

				cr->restore();
			}

		}

		if((*iter)->get_type()&&Duck::TYPE_WIDTHPOINT_POSITION)
		{
			if(hover)
			{
				synfig::Canvas::Handle canvas_h(get_work_area()->get_canvas());
				synfig::Time time(canvas_h?canvas_h->get_time():synfig::Time(0));
				synfigapp::ValueDesc value_desc((*iter)->get_value_desc());
				synfig::ValueNode_WPList::Handle wplist=NULL;
				ValueNode_Composite::Handle wpoint_composite=NULL;
				Real radius=0.0;
				Real new_value;
				Point p(sub_trans_point-sub_trans_origin);
				if(value_desc.parent_is_value_node())
					wplist=synfig::ValueNode_WPList::Handle::cast_dynamic(value_desc.get_parent_value_node());
				if(wplist)
				{
					bool wplistloop(wplist->get_loop());
					synfig::ValueNode_BLine::Handle bline(synfig::ValueNode_BLine::Handle::cast_dynamic(wplist->get_bline()));
					wpoint_composite=ValueNode_Composite::Handle::cast_dynamic(value_desc.get_value_node());
					if(bline && wpoint_composite)
					{
						bool blineloop(bline->get_loop());
						bool homogeneous=false;
						// Retrieve the homogeneous layer parameter
						std::set<Node*>::iterator iter;
						for(iter=wplist->parent_set.begin();iter!=wplist->parent_set.end();++iter)
							{
								Layer::Handle layer;
								layer=Layer::Handle::cast_dynamic(*iter);
								if(layer && layer->get_name() == "advanced_outline")
								{
									homogeneous=layer->get_param("homogeneous").get(bool());
									break;
								}
							}
						WidthPoint wp((*wpoint_composite)(time).get(WidthPoint()));
						if(wplistloop)
						{
							// The wplist is looped. This may require a position parameter
							// outside the range of 0-1, so make sure that the position doesn't
							// change drastically.
							// First normalise the current position
							Real value_old(wp.get_norm_position(wplistloop));
							Real value_old_b(wp.get_bound_position(wplistloop));
							// If it is homogeneous then convert it to standard
							value_old=homogeneous?hom_to_std((*bline)(time), value_old, wplistloop, blineloop):value_old;
							// grab a new position given by duck's position on the bline
							Real value_new = synfig::find_closest_point((*bline)(time), p , radius, blineloop);
							// calculate the difference between old and new positions
							Real difference = fmod( fmod(value_new - value_old, 1.0) + 1.0 , 1.0);
							//fmod is called twice to avoid negative values
							if (difference > 0.5)
								difference=difference-1.0;
							// calculate a new value for the position
							new_value=value_old+difference;
							// restore the homogeneous value if needed
							new_value = homogeneous?std_to_hom((*bline)(time), new_value, wplistloop, blineloop):new_value;
							// this is the difference between the new value and the old value inside the boundaries
							Real bound_diff((wp.get_lower_bound() + new_value*(wp.get_upper_bound()-wp.get_lower_bound()))-value_old_b);
							// add the new diff to the current value
							new_value = wp.get_position() + bound_diff;
						}
						else
						{
							// grab a new position given by duck's position on the bline
							new_value = synfig::find_closest_point((*bline)(time), p , radius, blineloop);
							// if it is homogeneous then convert to it
							new_value=homogeneous?std_to_hom((*bline)(time), new_value, wplistloop, blineloop):new_value;
							// convert the value inside the boundaries
							new_value = wp.get_lower_bound()+new_value*(wp.get_upper_bound()-wp.get_lower_bound());
						}
						cr->save();
						layout->set_text(strprintf("%2.3f", new_value));

						cr->set_source_rgb(0,0,0); // DUCK_COLOR_WIDTH_TEXT_1
						cr->move_to(
							point[0]+1+6,
							point[1]+1-18
							);
						layout->show_in_cairo_context(cr);
						cr->stroke();


						cr->set_source_rgb(1,0,1); // DUCK_COLOR_WIDTH_TEXT_2
						cr->move_to(
							point[0]+6,
							point[1]-18
							);
						layout->show_in_cairo_context(cr);
						cr->stroke();

						cr->restore();
					}
				}
			}
		}

	}

	for(;screen_duck_list.size();screen_duck_list.pop_front())
	{
		Gdk::Color color(screen_duck_list.front().color);
		double radius = 4;
		double outline = 1;
		bool duck_alternative = alternative && screen_duck_list.front().has_alternative;

		// Draw the hovered duck last (on top of everything)
		if(screen_duck_list.front().hover && !screen_duck_list.back().hover && screen_duck_list.size()>1)
		{
			screen_duck_list.push_back(screen_duck_list.front());
			continue;
		}

		cr->save();

		if(!screen_duck_list.front().selected)
		{
			color.set_red(color.get_red()*2/3);
			color.set_green(color.get_green()*2/3);
			color.set_blue(color.get_blue()*2/3);
		}

		if(screen_duck_list.front().hover)
		{
			radius += 1;
			outline += 1;
		}

		cr->arc(
			screen_duck_list.front().pos[0],
			screen_duck_list.front().pos[1],
			radius,
			0,
			M_PI*2
			);

		cr->set_source_rgba(
			color.get_red_p(),
			color.get_green_p(),
			color.get_blue_p(),
			duck_alternative ? 0.5 : 1.0
			);
		cr->fill_preserve();

		cr->set_line_width(outline);
		cr->set_source_rgba(0,0,0,1); //DUCK_COLOR_OUTLINE
		cr->stroke();

		cr->restore();
	}
}
Example #7
0
bool GHighPass::on_expose_event(GdkEventExpose* event)
{
  // This is where we draw on the window
  Glib::RefPtr<Gdk::Window> window = get_window();
  
  if(window)    // Only run if Window does exist
  {
    Gtk::Allocation allocation = get_allocation();
    int width = allocation.get_width();
    int height = allocation.get_height();
    
    // clip to the area indicated by the expose event so that we only redraw
    // the portion of the window that needs to be redrawn
    Cairo::RefPtr<Cairo::Context> cr = window->create_cairo_context();
    cr->rectangle(event->area.x, event->area.y,
            event->area.width, event->area.height);
    cr->clip();
    
    cr->rectangle(event->area.x, event->area.y,
        event->area.width, event->area.height);
    setColour(cr, COLOUR_GREY_3 );
    cr->fill();
    
    //cout << "HighPass getting state ID " << ID << endl; 
    float cutoffRangeZeroOne = stateStore->effectState.at(ID).values[0];
    
    cutoff = cutoffRangeZeroOne;
    
    bool active = stateStore->effectState.at(ID).active;
    bool globalUnit = stateStore->effectState.at(ID).globalUnit;
    
    int x = 0;
    int y = 0;
    xSize = 73;
    ySize = 37;
    
    // works but a bit simple
    cr -> move_to( x        , y         );
    cr -> line_to( x + xSize, y         );
    cr -> line_to( x + xSize, y + ySize );
    cr -> line_to( x        , y + ySize );
    cr -> close_path();
    
    // Draw outline shape
    cr -> set_source_rgb (0.1,0.1,0.1);
    cr -> fill();
    
    // draw "frequency guides"
    std::valarray< double > dashes(2);
    dashes[0] = 2.0;
    dashes[1] = 2.0;
    cr->set_dash (dashes, 0.0);
    cr->set_line_width(1.0);
    cr->set_source_rgb (0.4,0.4,0.4);
    for ( int i = 0; i < 3; i++ )
    {
      cr->move_to( x + ((xSize / 3.f)*i), y );
      cr->line_to( x + ((xSize / 3.f)*i), y + ySize );
    }
    for ( int i = 0; i < 3; i++ )
    {
      cr->move_to( x       , y + ((ySize / 3.f)*i) );
      cr->line_to( x +xSize, y + ((ySize / 3.f)*i) );
    }
    cr->stroke();
    cr->unset_dash();
    
    // move to bottom left, draw line to middle left
    cr->move_to( x + xSize-2 , y + ySize );
    cr->line_to( x + xSize-2 , y + (ySize/2));
    
    
    int startHorizontalLine = xSize* (cutoff + 0.4);
    if ( startHorizontalLine > 75 )
      startHorizontalLine = 75;
      
    cr->line_to( startHorizontalLine, y + (ySize/2) ); // horizontal line to start of curve
    
    int xSize1CP1 = xSize* (cutoff +0.1);
    int xSize1CP2 = xSize* (cutoff +0.08);
    int xSize1End = xSize* cutoff;
    
    if ( xSize1CP1 > 75 )
      xSize1CP1 = 75;
    if ( xSize1CP2 > 75 )
      xSize1CP2 = 75;
    if ( xSize1End > 75 )
      xSize1End = 75;
    
    cr->curve_to( xSize1CP1, y+(ySize*0.5),   // control point 1
                  xSize1CP2, y+(ySize*0.3),   // control point 2
                  xSize1End, y+(ySize*0.3));  // end of curve 1, start curve 2
    
    int xSize2CP1 = xSize* (cutoff - 0.03);
    int xSize2CP2 = xSize* (cutoff - 0.08);
    int xSize2End = xSize* (cutoff - 0.15);
    
    if ( xSize2CP1 > 75 )
      xSize2CP1 = 75;
    if ( xSize2CP2 > 75 )
      xSize2CP2 = 75;
    if ( xSize2End > 75 )
      xSize2End = 75;
    
    cr->curve_to( xSize2CP1, y+(ySize*0.3),  // control point 1
                  xSize2CP2, y+(ySize*0.3), // control point 2
                  xSize2End, y+(ySize)   ); // end of curve on floor
    
    if (active)
      setColour(cr, COLOUR_BLUE_1, 0.2 );
    else
      setColour(cr, COLOUR_GREY_1, 0.2 );
    cr->close_path();
    cr->fill_preserve();
    
    // stroke cutoff line
    cr->set_line_width(2.5);
    if ( active )
      setColour(cr, COLOUR_BLUE_1 );
    else
      setColour(cr, COLOUR_GREY_1 );
    cr->stroke();
    
    // click center
    if ( globalUnit )
    {
      if ( active )
        setColour(cr, COLOUR_GREEN_1, 0.9 );
      else
        setColour(cr, COLOUR_GREY_1,0.9 );
      cr->move_to( xSize * cutoff - 5, ySize*q - 5 );
      cr->line_to( xSize * cutoff + 5, ySize*q + 5 );
      cr->move_to( xSize * cutoff - 5, ySize*q + 5 );
      cr->line_to( xSize * cutoff + 5, ySize*q - 5 );
      cr->stroke();
    }
    else
    {
      if ( active )
        setColour(cr, COLOUR_ORANGE_1, 0.9 );
      else
        setColour(cr, COLOUR_GREY_1, 0.9 );
      cr->arc( xSize*cutoff, ySize*q, 7, 0, 6.2830 );
      cr->stroke();
    }
    
    // dials
    Dial(cr, active, 70, 140, cutoffRangeZeroOne, DIAL_MODE_NORMAL);
    Dial(cr, active, 150,140, q                 , DIAL_MODE_NORMAL);
    
    // outline
    setColour(cr, COLOUR_GREY_3 );
    cr->rectangle( x, y , xSize, ySize );
    cr->set_line_width(3);
    
    setColour(cr, COLOUR_GREY_2 );
    cr->stroke();
    
    /*
    if ( state.selected )
    {
      cr->rectangle(0, 0, 74, 216);
      setColour( cr, COLOUR_PURPLE_1 );
      cr->set_line_width(1);
      cr->stroke();
    }
    */
    
  }
  return true;
}