bool mitk::SetRegionTool::OnMouseReleased(Action* action, const StateEvent* stateEvent) { // 1. Hide the feedback contour, find out which slice the user clicked, find out which slice of the toolmanager's working image corresponds to that FeedbackContourTool::SetFeedbackContourVisible(false); const PositionEvent* positionEvent = dynamic_cast<const PositionEvent*>(stateEvent->GetEvent()); if (!positionEvent) return false; assert( positionEvent->GetSender()->GetRenderWindow() ); mitk::RenderingManager::GetInstance()->RequestUpdate(positionEvent->GetSender()->GetRenderWindow()); if (!m_FillContour && !m_StatusFillWholeSlice) return true; if ( FeedbackContourTool::CanHandleEvent(stateEvent) < 1.0 ) return false; DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); if (!workingNode) return false; Image* image = dynamic_cast<Image*>(workingNode->GetData()); const PlaneGeometry* planeGeometry( dynamic_cast<const PlaneGeometry*> (positionEvent->GetSender()->GetCurrentWorldGeometry2D() ) ); if ( !image || !planeGeometry ) return false; Image::Pointer slice = FeedbackContourTool::GetAffectedImageSliceAs2DImage( positionEvent, image ); if ( slice.IsNull() ) { MITK_ERROR << "Unable to extract slice." << std::endl; return false; } Contour* feedbackContour( FeedbackContourTool::GetFeedbackContour() ); Contour::Pointer projectedContour = FeedbackContourTool::ProjectContourTo2DSlice( slice, feedbackContour, false, false ); // false: don't add 0.5 (done by FillContourInSlice) // false: don't constrain the contour to the image's inside if (projectedContour.IsNull()) return false; FeedbackContourTool::FillContourInSlice( projectedContour, slice, m_PaintingPixelValue ); this->WriteBackSegmentationResult(positionEvent, slice); m_WholeImageContourInWorldCoordinates = NULL; m_SegmentationContourInWorldCoordinates = NULL; return true; }
void mitk::CorrectorAlgorithm::TobiasHeimannCorrectionAlgorithm(mitkIpPicDescriptor* pic) { /*! Some documentation (not by the original author) TobiasHeimannCorrectionAlgorithm will be called, when the user has finished drawing a freehand line. There should be different results, depending on the line's properties: 1. Without any prior segmentation, the start point and the end point of the drawn line will be connected to a contour and the area enclosed by the contour will be marked as segmentation. 2. When the whole line is inside a segmentation, start and end point will be connected to a contour and the area of this contour will be subtracted from the segmentation. 3. When the line starts inside a segmentation and ends outside with only a single transition from segmentation to no-segmentation, nothing will happen. 4. When there are multiple transitions between inside-segmentation and outside-segmentation, the line will be divided in so called segments. Each segment is either fully inside or fully outside a segmentation. When it is inside a segmentation, its enclosed area will be subtracted from the segmentation. When the segment is outside a segmentation, its enclosed area it will be added to the segmentation. The algorithm is described in full length in Tobias Heimann's diploma thesis (MBI Technical Report 145, p. 37 - 40). */ int oaSize = 1000000; // if we need a fixed number, then let it be big int* _ofsArray = new int[ oaSize ]; for (int i=0; i<oaSize; i++) _ofsArray[i] = 0; std::vector<TSegData> segData; segData.reserve( 16 ); Contour* contour3D = const_cast<Contour*>(m_Contour.GetPointer()); ContourUtils::Pointer contourUtils = ContourUtils::New(); Contour::Pointer projectedContour = contourUtils->ProjectContourTo2DSlice( m_WorkingImage, contour3D, true, false ); if (projectedContour.IsNull()) { delete[] _ofsArray; return; } if (projectedContour->GetNumberOfPoints() < 2) { delete[] _ofsArray; return; } // convert the projected contour into a ipSegmentation format mitkIpInt4_t* _points = new mitkIpInt4_t[2 * projectedContour->GetNumberOfPoints()]; const Contour::PathType::VertexListType* pointsIn2D = projectedContour->GetContourPath()->GetVertexList(); unsigned int index(0); for ( Contour::PathType::VertexListType::const_iterator iter = pointsIn2D->begin(); iter != pointsIn2D->end(); ++iter, ++index ) { _points[ 2 * index + 0 ] = static_cast<mitkIpInt4_t>( (*iter)[0] + 0.5 ); _points[ 2 * index + 1 ] = static_cast<mitkIpInt4_t>( (*iter)[1] + 0.5 ); } // store ofsets of the drawn line in array int _ofsNum = 0; unsigned int num = projectedContour->GetNumberOfPoints(); int lastOfs = -1; for (unsigned int i=0; i<num-1; i++) { float x = _points [2*i] + 0.5; float y = _points [2*i+1] + 0.5; float difX = _points [2*i+2] - x + 0.5; float difY = _points [2*i+3] - y + 0.5; float length = sqrt( difX*difX + difY*difY ); float dx = difX / length; float dy = difY / length; for (int p=0; ((float)p)<length; p++) { // if ofs is out of bounds, very nasty things will happen, so better check coordinates: if (x<0) x=0.5; else if (x>=pic->n[0]) x = pic->n[0]-0.5; if (y<0) y=0.5; else if (y>=pic->n[1]) y = pic->n[1]-0.5; // ok, now store safe ofs int ofs = (int)(x) + pic->n[0]*((int)(y)); x += dx; y += dy; if (ofs != lastOfs) { _ofsArray[_ofsNum++] = ofs; lastOfs = ofs; } } } if (_ofsNum == 0) { // contour was completely outside the binary image delete[] _ofsArray; delete[] _points; return; } ipMITKSegmentationTYPE* picdata = static_cast<ipMITKSegmentationTYPE*>(pic->data); // divide line in logical segments: int numSegments = 0; ipMITKSegmentationTYPE state = *(picdata + _ofsArray[0]); int ofsP = 1; int modifyStart, modifyEnd; // start of first and end of last segment bool nextSegment; segData.clear(); do { nextSegment = false; while (ofsP<_ofsNum && *(picdata + _ofsArray[ofsP])==state) ofsP++; if (ofsP<_ofsNum) { int lineStart = ofsP-1; if (numSegments==0) modifyStart = ofsP; state = *(picdata + _ofsArray[ofsP]); while (ofsP<_ofsNum && *(picdata + _ofsArray[ofsP])==state) ofsP++; if (ofsP<_ofsNum) { int lineEnd = ofsP; modifyEnd = lineEnd; nextSegment = true; // now we've got a valid segment from lineStart to lineEnd TSegData thisSegData; thisSegData.lineStart = lineStart; thisSegData.lineEnd = lineEnd; thisSegData.modified = modifySegment( lineStart, lineEnd, state, pic, _ofsArray ); segData.push_back( thisSegData ); numSegments++; } } } while (nextSegment); for (int segNr=0; segNr < numSegments; segNr++) { // draw line if modified: if ( segData[segNr].modified ) { for (int i=segData[segNr].lineStart+1; i<segData[segNr].lineEnd; i++) { *(picdata + _ofsArray[i]) = 1; } } } if (numSegments == 0) { if (num <= 1) { // only a single pixel. _ofsArray[_ofsNum-1] in else statement would crash, so don't do anything // no movement: delete operation // This behaviour would probably confuse users when they use the correction // tool to change a segmentation and it deletes much more than selected // if (state == 1) ipMITKSegmentationReplaceRegion4N( pic, _ofsArray[0], 0 ); } else if ( *(picdata + _ofsArray[_ofsNum-1]) == *(picdata + _ofsArray[0])) { // start point and end point both inside or both outside any segmentation // normal paint operation mitkIpInt4_t* p = new mitkIpInt4_t[2 * num]; for (unsigned int i = 0; i < num; i++) { p[2 * i] = (mitkIpInt4_t) _points [2 * i]; p[2 * i + 1] = (mitkIpInt4_t) _points [2 * i + 1]; } if (state == 0) ipMITKSegmentationCombineRegion (pic, p, num, 0, IPSEGMENTATION_OR, 1); else ipMITKSegmentationCombineRegion (pic, p, num, 0, IPSEGMENTATION_AND, 0); delete[] p; } } int numberOfContourPoints( 0 ); int oneContourOffset( 0 ); int newBufferSize( 0 ); int imageSize = pic->n[0]*pic->n[1]; for (oneContourOffset = 0; oneContourOffset < imageSize; oneContourOffset++) if ( ((ipMITKSegmentationTYPE*) pic->data)[oneContourOffset]> 0) break; float* contourPoints = ipMITKSegmentationGetContour8N( pic, oneContourOffset, numberOfContourPoints, newBufferSize ); // memory allocated with malloc if (contourPoints) { // copy point from float* to mitk::Contour Contour::Pointer contourInImageIndexCoordinates = Contour::New(); contourInImageIndexCoordinates->Initialize(); Point3D newPoint; for (int index = 0; index < numberOfContourPoints; ++index) { newPoint[0] = contourPoints[ 2 * index + 0 ]; newPoint[1] = contourPoints[ 2 * index + 1]; newPoint[2] = 0; contourInImageIndexCoordinates->AddVertex( newPoint ); } free(contourPoints); ContourUtils::Pointer contourUtils = ContourUtils::New(); contourUtils->FillContourInSlice( contourInImageIndexCoordinates, m_WorkingImage ); } delete[] _ofsArray; delete[] _points; }