int main(int argc, char *argv[])
{

	try {

	srandom(time(NULL));

	gConfig.setUpdateHook(purgeConfig);
	gLogInit("openbts",gConfig.getStr("Log.Level").c_str(),LOG_LOCAL7);
	LOG(ALERT) << "OpenBTS starting, ver " << VERSION << " build date " << __DATE__;

	COUT("\n\n" << gOpenBTSWelcome << "\n");
	gTMSITable.open(gConfig.getStr("Control.Reporting.TMSITable").c_str());
	gTransactionTable.init();
	gPhysStatus.open(gConfig.getStr("Control.Reporting.PhysStatusTable").c_str());
	gBTS.init();
	gSubscriberRegistry.init();
	gParser.addCommands();

	COUT("\nStarting the system...");

	Thread transceiverThread;
	transceiverThread.start((void*(*)(void*)) startTransceiver, NULL);

	// Start the SIP interface.
	gSIPInterface.start();


	//
	// Configure the radio.
	//

	// Start the transceiver interface.
	// Sleep long enough for the USRP to bootload.
	sleep(5);
	gTRX.start();

	// Set up the interface to the radio.
	// Get a handle to the C0 transceiver interface.
	ARFCNManager* C0radio = gTRX.ARFCN();

	// Tuning.
	// Make sure its off for tuning.
	C0radio->powerOff();
	// Get the ARFCN list.
	unsigned C0 = gConfig.getNum("GSM.Radio.C0");
	// Tune the radio.
	LOG(INFO) << "tuning TRX to ARFCN " << C0;
	ARFCNManager* radio = gTRX.ARFCN();
	radio->tune(C0);

	// Set TSC same as BCC everywhere.
	C0radio->setTSC(gBTS.BCC());

	// Set maximum expected delay spread.
	C0radio->setMaxDelay(gConfig.getNum("GSM.Radio.MaxExpectedDelaySpread"));

	// Set Receiver Gain
	C0radio->setRxGain(gConfig.getNum("GSM.Radio.RxGain"));

	// Turn on and power up.
	C0radio->powerOn();
	C0radio->setPower(gConfig.getNum("GSM.Radio.PowerManager.MinAttenDB"));

	//
	// Create a C-V channel set on C0T0.
	//

	// C-V on C0T0
	C0radio->setSlot(0,5);
	// SCH
	SCHL1FEC SCH;
	SCH.downstream(C0radio);
	SCH.open();
	// FCCH
	FCCHL1FEC FCCH;
	FCCH.downstream(C0radio);
	FCCH.open();
	// BCCH
	BCCHL1FEC BCCH;
	BCCH.downstream(C0radio);
	BCCH.open();
	// RACH
	RACHL1FEC RACH(gRACHC5Mapping);
	RACH.downstream(C0radio);
	RACH.open();
	// CCCHs
	CCCHLogicalChannel CCCH0(gCCCH_0Mapping);
	CCCH0.downstream(C0radio);
	CCCH0.open();
	CCCHLogicalChannel CCCH1(gCCCH_1Mapping);
	CCCH1.downstream(C0radio);
	CCCH1.open();
	CCCHLogicalChannel CCCH2(gCCCH_2Mapping);
	CCCH2.downstream(C0radio);
	CCCH2.open();
	// use CCCHs as AGCHs
	gBTS.addAGCH(&CCCH0);
	gBTS.addAGCH(&CCCH1);
	gBTS.addAGCH(&CCCH2);

	// C-V C0T0 SDCCHs
	SDCCHLogicalChannel C0T0SDCCH[4] = {
		SDCCHLogicalChannel(0,gSDCCH_4_0),
		SDCCHLogicalChannel(0,gSDCCH_4_1),
		SDCCHLogicalChannel(0,gSDCCH_4_2),
		SDCCHLogicalChannel(0,gSDCCH_4_3),
	};
	Thread C0T0SDCCHControlThread[4];
	for (int i=0; i<4; i++) {
		C0T0SDCCH[i].downstream(C0radio);
		C0T0SDCCHControlThread[i].start((void*(*)(void*))Control::DCCHDispatcher,&C0T0SDCCH[i]);
		C0T0SDCCH[i].open();
		gBTS.addSDCCH(&C0T0SDCCH[i]);
	}


	//
	// Configure the other slots.
	//

	// Count configured slots.
	unsigned sCount = 1;

	if (gConfig.defines("GSM.Channels.C1sFirst")) {
		// Create C-I slots.
		for (int i=0; i<gConfig.getNum("GSM.Channels.NumC1s"); i++) {
			gBTS.createCombinationI(gTRX,sCount);
			sCount++;
		}
	}

	// Create C-VII slots.
	for (int i=0; i<gConfig.getNum("GSM.Channels.NumC7s"); i++) {
		gBTS.createCombinationVII(gTRX,sCount);
		sCount++;
	}

	if (!gConfig.defines("GSM.Channels.C1sFirst")) {
		// Create C-I slots.
		for (int i=0; i<gConfig.getNum("GSM.Channels.NumC1s"); i++) {
			gBTS.createCombinationI(gTRX,sCount);
			sCount++;
		}
	}


	// Set up idle filling on C0 as needed.
	while (sCount<8) {
		gBTS.createCombination0(gTRX,sCount);
		sCount++;
	}

	/*
		Note: The number of different paging subchannels on       
		the CCCH is:                                        
                                                           
		MAX(1,(3 - BS-AG-BLKS-RES)) * BS-PA-MFRMS           
			if CCCH-CONF = "001"                        
		(9 - BS-AG-BLKS-RES) * BS-PA-MFRMS                  
			for other values of CCCH-CONF               
	*/

	// Set up the pager.
	// Set up paging channels.
	// HACK -- For now, use a single paging channel, since paging groups are broken.
	gBTS.addPCH(&CCCH2);

	// Be sure we are not over-reserving.
	LOG_ASSERT(gConfig.getNum("GSM.CCCH.PCH.Reserve")<(int)gBTS.numAGCHs());

	// OK, now it is safe to start the BTS.
	gBTS.start();

#ifdef HAVE_LIBREADLINE // [
	// start console
	using_history();

	static const char * const history_file_name = "/.openbts_history";
	char *history_name = 0;
	char *home_dir = getenv("HOME");

	if(home_dir) {
		size_t home_dir_len = strlen(home_dir);
		size_t history_file_len = strlen(history_file_name);
		size_t history_len = home_dir_len + history_file_len + 1;
		if(history_len > home_dir_len) {
			if(!(history_name = (char *)malloc(history_len))) {
				LOG(ERR) << "malloc failed: " << strerror(errno);
				exit(2);
			}
			memcpy(history_name, home_dir, home_dir_len);
			memcpy(history_name + home_dir_len, history_file_name,
			   history_file_len + 1);
			read_history(history_name);
		}
	}
#endif // HAVE_LIBREADLINE ]



	LOG(INFO) << "system ready";
	COUT("\n\nWelcome to OpenBTS.  Type \"help\" to see available commands.");
        // FIXME: We want to catch control-d (emacs keybinding for exit())


	// The logging parts were removed from this loop.
	// If we want them back, they will need to go into their own thread.
	while (1) {
#ifdef HAVE_LIBREADLINE // [
		char *inbuf = readline(gConfig.getStr("CLI.Prompt").c_str());
		if (!inbuf) break;
		if (*inbuf) {
			add_history(inbuf);
			// The parser returns -1 on exit.
			if (gParser.process(inbuf, cout, cin)<0) {
				free(inbuf);
				break;
			}
		}
		free(inbuf);
#else // HAVE_LIBREADLINE ][
		cout << endl << gConfig.getStr("CLI.Prompt");
		cout.flush();
		char inbuf[1024];
		cin.getline(inbuf,1024,'\n');
		// The parser returns -1 on exit.
		if (gParser.process(inbuf,cout,cin)<0) break;
#endif // !HAVE_LIBREADLINE ]
	}

#ifdef HAVE_LIBREADLINE // [
	if(history_name) {
		int e = write_history(history_name);
		if(e) {
			fprintf(stderr, "error: history: %s\n", strerror(e));
		}
		free(history_name);
		history_name = 0;
	}
#endif // HAVE_LIBREADLINE ]

	if (gTransceiverPid) kill(gTransceiverPid, SIGKILL);


	}

	catch (ConfigurationTableKeyNotFound e) {

		LOG(ALERT) << "configuration key " << e.key() << " not defined";
		exit(2);
	}

}
Example #2
0
int main(int argc, char *argv[])
{
	// TODO: Properly parse and handle any arguments
	if (argc > 1) {
		for (int argi = 0; argi < argc; argi++) {
			if (!strcmp(argv[argi], "--version") ||
			    !strcmp(argv[argi], "-v")) {
				cout << gVersionString << endl;
			}
		}

		return 0;
	}

	createStats();
 
	gReports.incr("OpenBTS.Starts");

	int sock = socket(AF_UNIX,SOCK_DGRAM,0);
	if (sock<0) {
		perror("creating CLI datagram socket");
		LOG(ALERT) << "cannot create socket for CLI";
		gReports.incr("OpenBTS.Exit.CLI.Socket");
		exit(1);
	}

	try {

	srandom(time(NULL));

	gConfig.setUpdateHook(purgeConfig);
	gLogInit("openbts",gConfig.getStr("Log.Level").c_str());
	LOG(ALERT) << "OpenBTS starting, ver " << VERSION << " build date " << __DATE__;

	COUT("\n\n" << gOpenBTSWelcome << "\n");
	gTMSITable.open(gConfig.getStr("Control.Reporting.TMSITable").c_str());
	gTransactionTable.init(gConfig.getStr("Control.Reporting.TransactionTable").c_str());
	gPhysStatus.open(gConfig.getStr("Control.Reporting.PhysStatusTable").c_str());
	gBTS.init();
	gSubscriberRegistry.init();
	gParser.addCommands();

	COUT("\nStarting the system...");

	// is the radio running?
	// Start the transceiver interface.
	LOG(INFO) << "checking transceiver";
	//gTRX.ARFCN(0)->powerOn();
	//sleep(gConfig.getNum("TRX.Timeout.Start",2));
	bool haveTRX = gTRX.ARFCN(0)->powerOn(false);

	Thread transceiverThread;
	if (!haveTRX) {
		transceiverThread.start((void*(*)(void*)) startTransceiver, NULL);
		// sleep to let the FPGA code load
		// TODO: we should be "pinging" the radio instead of sleeping
		sleep(5);
	} else {
		LOG(NOTICE) << "transceiver already running";
	}

	// Start the SIP interface.
	gSIPInterface.start();


	//
	// Configure the radio.
	//

	gTRX.start();

	// Set up the interface to the radio.
	// Get a handle to the C0 transceiver interface.
	ARFCNManager* C0radio = gTRX.ARFCN(0);

	// Tuning.
	// Make sure its off for tuning.
	//C0radio->powerOff();
	// Get the ARFCN list.
	unsigned C0 = gConfig.getNum("GSM.Radio.C0");
	unsigned numARFCNs = gConfig.getNum("GSM.Radio.ARFCNs");
	for (unsigned i=0; i<numARFCNs; i++) {
		// Tune the radios.
		unsigned ARFCN = C0 + i*2;
		LOG(INFO) << "tuning TRX " << i << " to ARFCN " << ARFCN;
		ARFCNManager* radio = gTRX.ARFCN(i);
		radio->tune(ARFCN);
	}

	// Send either TSC or full BSIC depending on radio need
	if (gConfig.getBool("GSM.Radio.NeedBSIC")) {
		// Send BSIC to 
		C0radio->setBSIC(gBTS.BSIC());
	} else {
		// Set TSC same as BCC everywhere.
		C0radio->setTSC(gBTS.BCC());
	}

	// Set maximum expected delay spread.
	C0radio->setMaxDelay(gConfig.getNum("GSM.Radio.MaxExpectedDelaySpread"));

	// Set Receiver Gain
	C0radio->setRxGain(gConfig.getNum("GSM.Radio.RxGain"));

	// Turn on and power up.
	C0radio->powerOn(true);
	C0radio->setPower(gConfig.getNum("GSM.Radio.PowerManager.MinAttenDB"));

	//
	// Create a C-V channel set on C0T0.
	//

	// C-V on C0T0
	C0radio->setSlot(0,5);
	// SCH
	SCHL1FEC SCH;
	SCH.downstream(C0radio);
	SCH.open();
	// FCCH
	FCCHL1FEC FCCH;
	FCCH.downstream(C0radio);
	FCCH.open();
	// BCCH
	BCCHL1FEC BCCH;
	BCCH.downstream(C0radio);
	BCCH.open();
	// RACH
	RACHL1FEC RACH(gRACHC5Mapping);
	RACH.downstream(C0radio);
	RACH.open();
	// CCCHs
	CCCHLogicalChannel CCCH0(gCCCH_0Mapping);
	CCCH0.downstream(C0radio);
	CCCH0.open();
	CCCHLogicalChannel CCCH1(gCCCH_1Mapping);
	CCCH1.downstream(C0radio);
	CCCH1.open();
	CCCHLogicalChannel CCCH2(gCCCH_2Mapping);
	CCCH2.downstream(C0radio);
	CCCH2.open();
	// use CCCHs as AGCHs
	gBTS.addAGCH(&CCCH0);
	gBTS.addAGCH(&CCCH1);
	gBTS.addAGCH(&CCCH2);

	// C-V C0T0 SDCCHs
	SDCCHLogicalChannel C0T0SDCCH[4] = {
		SDCCHLogicalChannel(0,0,gSDCCH_4_0),
		SDCCHLogicalChannel(0,0,gSDCCH_4_1),
		SDCCHLogicalChannel(0,0,gSDCCH_4_2),
		SDCCHLogicalChannel(0,0,gSDCCH_4_3),
	};
	Thread C0T0SDCCHControlThread[4];
	for (int i=0; i<4; i++) {
		C0T0SDCCH[i].downstream(C0radio);
		C0T0SDCCHControlThread[i].start((void*(*)(void*))Control::DCCHDispatcher,&C0T0SDCCH[i]);
		C0T0SDCCH[i].open();
		gBTS.addSDCCH(&C0T0SDCCH[i]);
	}


	//
	// Configure the other slots.
	//

	// Count configured slots.
	unsigned sCount = 1;

	if (gConfig.defines("GSM.Channels.C1sFirst")) {
		// Create C-I slots.
		for (int i=0; i<gConfig.getNum("GSM.Channels.NumC1s"); i++) {
			gBTS.createCombinationI(gTRX,sCount/8,sCount%8);
			sCount++;
		}
	}

	// Create C-VII slots.
	for (int i=0; i<gConfig.getNum("GSM.Channels.NumC7s"); i++) {
		gBTS.createCombinationVII(gTRX,sCount/8,sCount%8);
		sCount++;
	}

	if (!gConfig.defines("GSM.Channels.C1sFirst")) {
		// Create C-I slots.
		for (int i=0; i<gConfig.getNum("GSM.Channels.NumC1s"); i++) {
			gBTS.createCombinationI(gTRX,sCount/8,sCount%8);
			sCount++;
		}
	}


	// Set up idle filling on C0 as needed.
	while (sCount<8) {
		gBTS.createCombination0(gTRX,sCount);
		sCount++;
	}

	/*
		Note: The number of different paging subchannels on       
		the CCCH is:                                        
                                                           
		MAX(1,(3 - BS-AG-BLKS-RES)) * BS-PA-MFRMS           
			if CCCH-CONF = "001"                        
		(9 - BS-AG-BLKS-RES) * BS-PA-MFRMS                  
			for other values of CCCH-CONF               
	*/

	// Set up the pager.
	// Set up paging channels.
	// HACK -- For now, use a single paging channel, since paging groups are broken.
	gBTS.addPCH(&CCCH2);

	// Be sure we are not over-reserving.
	if (gConfig.getNum("GSM.Channels.SDCCHReserve")>=(int)gBTS.SDCCHTotal()) {
		unsigned val = gBTS.SDCCHTotal() - 1;
		LOG(CRIT) << "GSM.Channels.SDCCHReserve too big, changing to " << val;
		gConfig.set("GSM.Channels.SDCCHReserve",val);
	}


	// OK, now it is safe to start the BTS.
	gBTS.start();


	cout << "\nsystem ready\n";
	cout << "\nuse the OpenBTSCLI utility to access CLI\n";
	LOG(INFO) << "system ready";

	struct sockaddr_un cmdSockName;
	cmdSockName.sun_family = AF_UNIX;
	const char* sockpath = gConfig.getStr("CLI.SocketPath").c_str();
	char rmcmd[strlen(sockpath)+5];
	sprintf(rmcmd,"rm %s",sockpath);
	system(rmcmd);
	strcpy(cmdSockName.sun_path,sockpath);
	if (bind(sock, (struct sockaddr *) &cmdSockName, sizeof(struct sockaddr_un))) {
		perror("binding name to cmd datagram socket");
		LOG(ALERT) << "cannot bind socket for CLI at " << sockpath;
		gReports.incr("OpenBTS.Exit.CLI.Socket");
		exit(1);
	}

	while (1) {
		char cmdbuf[1000];
		struct sockaddr_un source;
		socklen_t sourceSize = sizeof(source);
		int nread = recvfrom(sock,cmdbuf,sizeof(cmdbuf)-1,0,(struct sockaddr*)&source,&sourceSize);
		gReports.incr("OpenBTS.CLI.Command");
		cmdbuf[nread]='\0';
		LOG(INFO) << "received command \"" << cmdbuf << "\" from " << source.sun_path;
		std::ostringstream sout;
		int res = gParser.process(cmdbuf,sout);
		const std::string rspString= sout.str();
		const char* rsp = rspString.c_str();
		LOG(INFO) << "sending " << strlen(rsp) << "-char result to " << source.sun_path;
		if (sendto(sock,rsp,strlen(rsp)+1,0,(struct sockaddr*)&source,sourceSize)<0) {
			LOG(ERR) << "can't send CLI response to " << source.sun_path;
			gReports.incr("OpenBTS.CLI.Command.ResponseFailure");
		}
		// res<0 means to exit the application
		if (res<0) break;
		gReports.incr("OpenBTS.Exit.Normal.CLI");
	}

	} // try

	catch (ConfigurationTableKeyNotFound e) {
		LOG(EMERG) << "required configuration parameter " << e.key() << " not defined, aborting";
		gReports.incr("OpenBTS.Exit.Error.ConfigurationParamterNotFound");
	}

	//if (gTransceiverPid) kill(gTransceiverPid, SIGKILL);
	close(sock);

}