Example #1
0
int main(int argc, char** argv)
{
    try {
        // define the problem dimensions
        const int dim=2;

        // create a grid object
        typedef double NumberType;
        typedef Dune::SGrid<dim,dim> GridType;

        Dune::FieldVector<GridType::ctype,dim> L(0);
        Dune::FieldVector<GridType::ctype,dim> R(300);
        Dune::FieldVector<int,dim> N(2);
        GridType grid(N,L,R);
        typedef GridType::LevelGridView GridView;
        GridView gridView(grid.levelView(0));


        //Uniform mat;
        Dune::Uniform mat;

        Dune::HomogeneousSoil<GridType, NumberType> soil;
//        Dune::HeterogeneousSoil<GridType, NumberType> soil(grid, "permeab.dat", true);
//        printvector(std::cout, *(soil.permeability), "permeability", "row", 200, 1);
//        soil.permeability.vtkout("permeability", grid);

        Dune::TwoPhaseRelations<GridType, NumberType> materialLaw(soil, mat, mat);

        typedef Dune::VariableClass<GridView, NumberType> VC;

        double initsat = 0.8;

//        VC variables(gridView,initsat);
        //for fe discretisation -> pressure on the nodes!
        VC variables(gridView, dim, initsat);

        Dune::UniformProblem<GridView, NumberType, VC> problem(variables, mat, mat, soil, materialLaw, R);

        Dune::Timer timer;
        timer.reset();
//        Dune::LeafFEPressure2P<GridView, NumberType, VC> diffusion(gridView, problem);
        Dune::FVWettingPhaseVelocity2P<GridView, NumberType, VC> diffusion(gridView, problem, "pw","Sw");
//        Dune::MimeticPressure2P<GridView, NumberType, VC> diffusion(gridView, problem);


        diffusion.pressure();
        std::cout << "pressure calculation took " << timer.elapsed() << " seconds" << std::endl;
        printvector(std::cout, variables.pressure(), "pressure", "row", 200, 1, 3);
        variables.vtkout("fv", 0);

        diffusion.calculateVelocity();
        printvector(std::cout, variables.velocity(), "velocity", "row", 4, 1, 3);

        return 0;
    }
    catch (Dune::Exception &e) {
        std::cerr << "Dune reported error: " << e << std::endl;
    }
    catch (...) {
        std::cerr << "Unknown exception thrown!" << std::endl;
    }
}
Example #2
0
        SimulatorReport nonlinearIteration(const int iteration,
                                           const SimulatorTimerInterface& timer,
                                           NonlinearSolverType& nonlinear_solver)
        {
            SimulatorReport report;
            failureReport_ = SimulatorReport();
            Dune::Timer perfTimer;

            perfTimer.start();
            if (iteration == 0) {
                // For each iteration we store in a vector the norms of the residual of
                // the mass balance for each active phase, the well flux and the well equations.
                residual_norms_history_.clear();
                current_relaxation_ = 1.0;
                dx_old_ = 0.0;
                convergence_reports_.push_back({timer.reportStepNum(), timer.currentStepNum(), {}});
                convergence_reports_.back().report.reserve(11);
            }

            report.total_linearizations = 1;

            try {
                report += assembleReservoir(timer, iteration);
                report.assemble_time += perfTimer.stop();
            }
            catch (...) {
                report.assemble_time += perfTimer.stop();
                failureReport_ += report;
                // todo (?): make the report an attribute of the class
                throw; // continue throwing the stick
            }

            std::vector<double> residual_norms;
            perfTimer.reset();
            perfTimer.start();
            // the step is not considered converged until at least minIter iterations is done
            {
                auto convrep = getConvergence(timer, iteration,residual_norms);
                report.converged = convrep.converged()  && iteration > nonlinear_solver.minIter();;
                ConvergenceReport::Severity severity = convrep.severityOfWorstFailure();
                convergence_reports_.back().report.push_back(std::move(convrep));

                // Throw if any NaN or too large residual found.
                if (severity == ConvergenceReport::Severity::NotANumber) {
                    OPM_THROW(Opm::NumericalIssue, "NaN residual found!");
                } else if (severity == ConvergenceReport::Severity::TooLarge) {
                    OPM_THROW(Opm::NumericalIssue, "Too large residual found!");
                }
            }

             // checking whether the group targets are converged
             if (wellModel().wellCollection().groupControlActive()) {
                  report.converged = report.converged && wellModel().wellCollection().groupTargetConverged(wellModel().wellState().wellRates());
             }

            report.update_time += perfTimer.stop();
            residual_norms_history_.push_back(residual_norms);
            if (!report.converged) {
                perfTimer.reset();
                perfTimer.start();
                report.total_newton_iterations = 1;

                // enable single precision for solvers when dt is smaller then 20 days
                //residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ;

                // Compute the nonlinear update.
                const int nc = UgGridHelpers::numCells(grid_);
                BVector x(nc);

                // apply the Schur compliment of the well model to the reservoir linearized
                // equations
                wellModel().linearize(ebosSimulator().model().linearizer().jacobian(),
                                      ebosSimulator().model().linearizer().residual());

                // Solve the linear system.
                linear_solve_setup_time_ = 0.0;
                try {
                    solveJacobianSystem(x);
                    report.linear_solve_setup_time += linear_solve_setup_time_;
                    report.linear_solve_time += perfTimer.stop();
                    report.total_linear_iterations += linearIterationsLastSolve();
                }
                catch (...) {
                    report.linear_solve_setup_time += linear_solve_setup_time_;
                    report.linear_solve_time += perfTimer.stop();
                    report.total_linear_iterations += linearIterationsLastSolve();

                    failureReport_ += report;
                    throw; // re-throw up
                }

                perfTimer.reset();
                perfTimer.start();

                // handling well state update before oscillation treatment is a decision based
                // on observation to avoid some big performance degeneration under some circumstances.
                // there is no theorectical explanation which way is better for sure.
                wellModel().postSolve(x);

                if (param_.use_update_stabilization_) {
                    // Stabilize the nonlinear update.
                    bool isOscillate = false;
                    bool isStagnate = false;
                    nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
                    if (isOscillate) {
                        current_relaxation_ -= nonlinear_solver.relaxIncrement();
                        current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
                        if (terminalOutputEnabled()) {
                            std::string msg = "    Oscillating behavior detected: Relaxation set to "
                                    + std::to_string(current_relaxation_);
                            OpmLog::info(msg);
                        }
                    }
                    nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
                }

                // Apply the update, with considering model-dependent limitations and
                // chopping of the update.
                updateSolution(x);

                report.update_time += perfTimer.stop();
            }

            return report;
        }
Example #3
0
// ----------------- Main program -----------------
int main(int argc, char** argv)
{
    Dune::Timer externalSetupTimer;
    externalSetupTimer.start();

    detail::handleVersionCmdLine(argc, argv);
    // MPI setup.
#if HAVE_DUNE_FEM
    Dune::Fem::MPIManager::initialize(argc, argv);
    int mpiRank = Dune::Fem::MPIManager::rank();
#else
    // the design of the plain dune MPIHelper class is quite flawed: there is no way to
    // get the instance without having the argc and argv parameters available and it is
    // not possible to determine the MPI rank and size without an instance. (IOW: the
    // rank() and size() methods are supposed to be static.)
    const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv);
    int mpiRank = mpiHelper.rank();
#endif

    // we always want to use the default locale, and thus spare us the trouble
    // with incorrect locale settings.
    Opm::resetLocale();

    // this is a work-around for a catch 22: we do not know what code path to use without
    // parsing the deck, but we don't know the deck without having access to the
    // parameters and this requires to know the type tag to be used. To solve this, we
    // use a type tag just for parsing the parameters before we instantiate the actual
    // simulator object. (Which parses the parameters again, but since this is done in an
    // identical manner it does not matter.)
    typedef TTAG(FlowEarlyBird) PreTypeTag;
    typedef GET_PROP_TYPE(PreTypeTag, Problem) PreProblem;

    PreProblem::setBriefDescription("Flow, an advanced reservoir simulator for ECL-decks provided by the Open Porous Media project.");

    int status = Opm::FlowMainEbos<PreTypeTag>::setupParameters_(argc, argv);
    if (status != 0)
        // if setupParameters_ returns a value smaller than 0, there was no error, but
        // the program should abort. This is the case e.g. for the --help and the
        // --print-properties parameters.
        return (status >= 0)?status:0;

    bool outputCout = false;
    if (mpiRank == 0)
        outputCout = EWOMS_GET_PARAM(PreTypeTag, bool, EnableTerminalOutput);

    std::string deckFilename = EWOMS_GET_PARAM(PreTypeTag, std::string, EclDeckFileName);
    typedef typename GET_PROP_TYPE(PreTypeTag, Vanguard) PreVanguard;
    try {
        deckFilename = PreVanguard::canonicalDeckPath(deckFilename).string();
    }
    catch (const std::exception& e) {
        if ( mpiRank == 0 )
            std::cerr << "Exception received: " << e.what() << ". Try '--help' for a usage description.\n";
#if HAVE_MPI
        MPI_Finalize();
#endif
        return 1;
    }

    if (outputCout) {
        Opm::FlowMainEbos<PreTypeTag>::printBanner();
    }

    // Create Deck and EclipseState.
    try {
        if (outputCout) {
            std::cout << "Reading deck file '" << deckFilename << "'\n";
            std::cout.flush();
        }
        std::shared_ptr<Opm::Deck> deck;
        std::shared_ptr<Opm::EclipseState> eclipseState;
        std::shared_ptr<Opm::Schedule> schedule;
        std::shared_ptr<Opm::SummaryConfig> summaryConfig;
        {
            Opm::Parser parser;
            Opm::ParseContext parseContext;
            Opm::ErrorGuard errorGuard;

            if (EWOMS_GET_PARAM(PreTypeTag, bool, EclStrictParsing))
                parseContext.update( Opm::InputError::DELAYED_EXIT1);
            else {
                parseContext.update(Opm::ParseContext::PARSE_RANDOM_SLASH, Opm::InputError::IGNORE);
                parseContext.update(Opm::ParseContext::PARSE_MISSING_DIMS_KEYWORD, Opm::InputError::WARN);
                parseContext.update(Opm::ParseContext::SUMMARY_UNKNOWN_WELL, Opm::InputError::WARN);
                parseContext.update(Opm::ParseContext::SUMMARY_UNKNOWN_GROUP, Opm::InputError::WARN);
            }

            deck.reset( new Opm::Deck( parser.parseFile(deckFilename , parseContext, errorGuard)));
            Opm::MissingFeatures::checkKeywords(*deck, parseContext, errorGuard);

            if ( outputCout )
                Opm::checkDeck(*deck, parser, parseContext, errorGuard);

            eclipseState.reset( new Opm::EclipseState(*deck, parseContext, errorGuard ));
            schedule.reset(new Opm::Schedule(*deck, *eclipseState, parseContext, errorGuard));
            summaryConfig.reset( new Opm::SummaryConfig(*deck, *schedule, eclipseState->getTableManager(), parseContext, errorGuard));

            if (errorGuard) {
                errorGuard.dump();
                errorGuard.clear();

                throw std::runtime_error("Unrecoverable errors were encountered while loading input.");
            }
        }
        const auto& phases = Opm::Runspec(*deck).phases();

        // run the actual simulator
        //
        // TODO: make sure that no illegal combinations like thermal and twophase are
        //       requested.

        // Twophase cases
        if( phases.size() == 2 ) {
            // oil-gas
            if (phases.active( Opm::Phase::GAS ))
            {
                Opm::flowEbosGasOilSetDeck(externalSetupTimer.elapsed(), *deck, *eclipseState, *schedule, *summaryConfig);
                return Opm::flowEbosGasOilMain(argc, argv);
            }
            // oil-water
            else if ( phases.active( Opm::Phase::WATER ) )
            {
                Opm::flowEbosOilWaterSetDeck(externalSetupTimer.elapsed(), *deck, *eclipseState, *schedule, *summaryConfig);
                return Opm::flowEbosOilWaterMain(argc, argv);
            }
            else {
                if (outputCout)
                    std::cerr << "No suitable configuration found, valid are Twophase (oilwater and oilgas), polymer, solvent, or blackoil" << std::endl;
                return EXIT_FAILURE;
            }
        }
        // Polymer case
        else if ( phases.active( Opm::Phase::POLYMER ) ) {

            if ( !phases.active( Opm::Phase::WATER) ) {
                if (outputCout)
                    std::cerr << "No valid configuration is found for polymer simulation, valid options include "
                              << "oilwater + polymer and blackoil + polymer" << std::endl;
                return EXIT_FAILURE;
            }

            // Need to track the polymer molecular weight
            // for the injectivity study
            if ( phases.active( Opm::Phase::POLYMW ) ) {
                // only oil water two phase for now
                assert( phases.size() == 4);
                return Opm::flowEbosOilWaterPolymerInjectivityMain(argc, argv);
            }

            if ( phases.size() == 3 ) { // oil water polymer case
                Opm::flowEbosOilWaterPolymerSetDeck(externalSetupTimer.elapsed(), *deck, *eclipseState, *schedule, *summaryConfig);
                return Opm::flowEbosOilWaterPolymerMain(argc, argv);
            } else {
                Opm::flowEbosPolymerSetDeck(externalSetupTimer.elapsed(), *deck, *eclipseState, *schedule, *summaryConfig);
                return Opm::flowEbosPolymerMain(argc, argv);
            }
        }
        // Solvent case
        else if ( phases.active( Opm::Phase::SOLVENT ) ) {
            Opm::flowEbosSolventSetDeck(externalSetupTimer.elapsed(), *deck, *eclipseState, *schedule, *summaryConfig);
            return Opm::flowEbosSolventMain(argc, argv);
        }
        // Energy case
        else if (eclipseState->getSimulationConfig().isThermal()) {
            Opm::flowEbosEnergySetDeck(externalSetupTimer.elapsed(), *deck, *eclipseState, *schedule, *summaryConfig);
            return Opm::flowEbosEnergyMain(argc, argv);
        }
        // Blackoil case
        else if( phases.size() == 3 ) {
            Opm::flowEbosBlackoilSetDeck(externalSetupTimer.elapsed(), *deck, *eclipseState, *schedule, *summaryConfig);
            return Opm::flowEbosBlackoilMain(argc, argv);
        }
        else
        {
            if (outputCout)
                std::cerr << "No suitable configuration found, valid are Twophase, polymer, solvent, energy, or blackoil" << std::endl;
            return EXIT_FAILURE;
        }
    }