void LinearElasticIsotropic<DisplacementDim>::computeConstitutiveRelation( double const t, ProcessLib::SpatialPosition const& x, double const aperture0, Eigen::Ref<Eigen::VectorXd const> sigma0, Eigen::Ref<Eigen::VectorXd const> /*w_prev*/, Eigen::Ref<Eigen::VectorXd const> w, Eigen::Ref<Eigen::VectorXd const> /*sigma_prev*/, Eigen::Ref<Eigen::VectorXd> sigma, Eigen::Ref<Eigen::MatrixXd> C, typename FractureModelBase<DisplacementDim>::MaterialStateVariables& material_state_variables) { material_state_variables.reset(); const int index_ns = DisplacementDim - 1; C.setZero(); for (int i = 0; i < index_ns; i++) C(i, i) = _mp.shear_stiffness(t, x)[0]; sigma.noalias() = C * w; double const aperture = w[index_ns] + aperture0; sigma.coeffRef(index_ns) = _mp.normal_stiffness(t, x)[0] * w[index_ns] * logPenalty(aperture0, aperture, _penalty_aperture_cutoff); C(index_ns, index_ns) = _mp.normal_stiffness(t, x)[0] * logPenaltyDerivative(aperture0, aperture, _penalty_aperture_cutoff); sigma.noalias() += sigma0; // correction for an opening fracture if (_tension_cutoff && sigma[index_ns] > 0) { C.setZero(); sigma.setZero(); material_state_variables.setTensileStress(true); } }
void MohrCoulomb<DisplacementDim>::computeConstitutiveRelation( double const t, ProcessLib::SpatialPosition const& x, double const aperture0, Eigen::Ref<Eigen::VectorXd const> sigma0, Eigen::Ref<Eigen::VectorXd const> w_prev, Eigen::Ref<Eigen::VectorXd const> w, Eigen::Ref<Eigen::VectorXd const> sigma_prev, Eigen::Ref<Eigen::VectorXd> sigma, Eigen::Ref<Eigen::MatrixXd> Kep, typename FractureModelBase<DisplacementDim>::MaterialStateVariables& material_state_variables) { material_state_variables.reset(); MaterialPropertyValues const mat(_mp, t, x); Eigen::VectorXd const dw = w - w_prev; const int index_ns = DisplacementDim - 1; double const aperture = w[index_ns] + aperture0; double const aperture_prev = w_prev[index_ns] + aperture0; Eigen::MatrixXd Ke; { // Elastic tangent stiffness Ke = Eigen::MatrixXd::Zero(DisplacementDim, DisplacementDim); for (int i = 0; i < index_ns; i++) Ke(i, i) = mat.Ks; Ke(index_ns, index_ns) = mat.Kn * logPenaltyDerivative(aperture0, aperture, _penalty_aperture_cutoff); } Eigen::MatrixXd Ke_prev; { // Elastic tangent stiffness at w_prev Ke_prev = Eigen::MatrixXd::Zero(DisplacementDim, DisplacementDim); for (int i = 0; i < index_ns; i++) Ke_prev(i, i) = mat.Ks; Ke_prev(index_ns, index_ns) = mat.Kn * logPenaltyDerivative( aperture0, aperture_prev, _penalty_aperture_cutoff); } // Total plastic aperture compression // NOTE: Initial condition sigma0 seems to be associated with an initial // condition of the w0 = 0. Therefore the initial state is not associated // with a plastic aperture change. Eigen::VectorXd const w_p_prev = w_prev - Ke_prev.fullPivLu().solve(sigma_prev - sigma0); { // Exact elastic predictor sigma.noalias() = Ke * (w - w_p_prev); sigma.coeffRef(index_ns) = mat.Kn * w[index_ns] * logPenalty(aperture0, aperture, _penalty_aperture_cutoff); } sigma.noalias() += sigma0; double const sigma_n = sigma[index_ns]; // correction for an opening fracture if (_tension_cutoff && sigma_n > 0) { Kep.setZero(); sigma.setZero(); material_state_variables.setTensileStress(true); return; } // check shear yield function (Fs) Eigen::VectorXd const sigma_s = sigma.head(DisplacementDim-1); double const mag_tau = sigma_s.norm(); // magnitude double const Fs = mag_tau + sigma_n * std::tan(mat.phi) - mat.c; material_state_variables.setShearYieldFunctionValue(Fs); if (Fs < .0) { Kep = Ke; return; } Eigen::VectorXd dFs_dS(DisplacementDim); dFs_dS.head(DisplacementDim-1).noalias() = sigma_s.normalized(); dFs_dS[index_ns] = std::tan(mat.phi); // plastic potential function: Qs = |tau| + Sn * tan da Eigen::VectorXd dQs_dS = dFs_dS; dQs_dS[index_ns] = std::tan(mat.psi); // plastic multiplier Eigen::RowVectorXd const A = dFs_dS.transpose() * Ke / (dFs_dS.transpose() * Ke * dQs_dS); double const d_eta = A * dw; // plastic part of the dispalcement Eigen::VectorXd const dwp = dQs_dS * d_eta; // correct stress sigma.noalias() = sigma_prev + Ke * (dw - dwp); // Kep Kep = Ke - Ke * dQs_dS * A; }