Example #1
0
    void paramsCallback(navigation::ForceFieldConfig &config, uint32_t level)
    {
        ROS_DEBUG_STREAM("Force field reconfigure Request ->" << " kp_x:" << config.kp_x
                         << " kp_y:" << config.kp_y
                         << " kp_z:" << config.kp_z
                         << " kd_x:" << config.kd_x
                         << " kd_y:" << config.kd_y
                         << " kd_z:" << config.kd_z
                         << " ro:"   << config.ro);

        kp << config.kp_x,
                config.kp_y,
                config.kp_z;

        kd << config.kd_x,
                config.kd_y,
                config.kd_z;

        kp_mat << kp.x(), 0, 0,
                0, kp.y(), 0,
                0, 0, kp.z();
        kd_mat << kd.x(), 0, 0,
                0, kd.y(), 0,
                0, 0, kd.z();

        ro = config.ro;

        laser_max_distance = config.laser_max_distance;
        //slave_to_master_scale=Eigen::Matrix<double,3,1> (fabs(config.master_workspace_size.x/config.slave_workspace_size.x), fabs(config.master_workspace_size.y/config.slave_workspace_size.y), fabs(config.master_workspace_size.z/config.slave_workspace_size.z));
    }
Example #2
0
	/**
	 * @brief Send a safety zone (volume), which is defined by two corners of a cube,
	 * to the FCU.
	 *
	 * @note ENU frame.
	 */
	void send_safety_set_allowed_area(Eigen::Vector3d p1, Eigen::Vector3d p2)
	{
		ROS_INFO_STREAM_NAMED("safetyarea", "SA: Set safty area: P1 " << p1 << " P2 " << p2);

		p1 = ftf::transform_frame_enu_ned(p1);
		p2 = ftf::transform_frame_enu_ned(p2);

		mavlink::common::msg::SAFETY_SET_ALLOWED_AREA s;
		m_uas->msg_set_target(s);

		// TODO: use enum from lib
		s.frame = utils::enum_value(mavlink::common::MAV_FRAME::LOCAL_NED);

		// [[[cog:
		// for p in range(1, 3):
		//     for v in ('x', 'y', 'z'):
		//         cog.outl("s.p%d%s = p%d.%s();" % (p, v, p, v))
		// ]]]
		s.p1x = p1.x();
		s.p1y = p1.y();
		s.p1z = p1.z();
		s.p2x = p2.x();
		s.p2y = p2.y();
		s.p2z = p2.z();
		// [[[end]]] (checksum: c996a362f338fcc6b714c8be583c3be0)

		UAS_FCU(m_uas)->send_message_ignore_drop(s);
	}
Example #3
0
BoundingBox Face::boundingBox() const
{
    if (isBoundary()) {
        return BoundingBox(he->vertex->position, he->next->vertex->position);
    }
    
    Eigen::Vector3d p1 = he->vertex->position;
    Eigen::Vector3d p2 = he->next->vertex->position;
    Eigen::Vector3d p3 = he->next->next->vertex->position;
    
    Eigen::Vector3d min = p1;
    Eigen::Vector3d max = p1;
    
    if (p2.x() < min.x()) min.x() = p2.x();
    if (p3.x() < min.x()) min.x() = p3.x();
    
    if (p2.y() < min.y()) min.y() = p2.y();
    if (p3.y() < min.y()) min.y() = p3.y();
    
    if (p2.z() < min.z()) min.z() = p2.z();
    if (p3.z() < min.z()) min.z() = p3.z();
    
    if (p2.x() > max.x()) max.x() = p2.x();
    if (p3.x() > max.x()) max.x() = p3.x();
    
    if (p2.y() > max.y()) max.y() = p2.y();
    if (p3.y() > max.y()) max.y() = p3.y();
    
    if (p2.z() > max.z()) max.z() = p2.z();
    if (p3.z() > max.z()) max.z() = p3.z();
    
    return BoundingBox(min, max);
}
Example #4
0
void GlobalOptimization::inputOdom(double t, Eigen::Vector3d OdomP, Eigen::Quaterniond OdomQ)
{
	mPoseMap.lock();
    vector<double> localPose{OdomP.x(), OdomP.y(), OdomP.z(), 
    					     OdomQ.w(), OdomQ.x(), OdomQ.y(), OdomQ.z()};
    localPoseMap[t] = localPose;


    Eigen::Quaterniond globalQ;
    globalQ = WGPS_T_WVIO.block<3, 3>(0, 0) * OdomQ;
    Eigen::Vector3d globalP = WGPS_T_WVIO.block<3, 3>(0, 0) * OdomP + WGPS_T_WVIO.block<3, 1>(0, 3);
    vector<double> globalPose{globalP.x(), globalP.y(), globalP.z(),
                              globalQ.w(), globalQ.x(), globalQ.y(), globalQ.z()};
    globalPoseMap[t] = globalPose;
    lastP = globalP;
    lastQ = globalQ;

    geometry_msgs::PoseStamped pose_stamped;
    pose_stamped.header.stamp = ros::Time(t);
    pose_stamped.header.frame_id = "world";
    pose_stamped.pose.position.x = lastP.x();
    pose_stamped.pose.position.y = lastP.y();
    pose_stamped.pose.position.z = lastP.z();
    pose_stamped.pose.orientation.x = lastQ.x();
    pose_stamped.pose.orientation.y = lastQ.y();
    pose_stamped.pose.orientation.z = lastQ.z();
    pose_stamped.pose.orientation.w = lastQ.w();
    global_path.header = pose_stamped.header;
    global_path.poses.push_back(pose_stamped);

    mPoseMap.unlock();
}
Example #5
0
Eigen::Vector3d PIDController::compute_linvel_effort(Eigen::Vector3d goal, Eigen::Vector3d current, ros::Time last_time){
	double lin_vel_x = pid_linvel_x.computeCommand(goal.x() - current.x(), ros::Time::now() - last_time);
	double lin_vel_y = pid_linvel_y.computeCommand(goal.y() - current.y(), ros::Time::now() - last_time);
	double lin_vel_z = pid_linvel_z.computeCommand(goal.z() - current.z(), ros::Time::now() - last_time);

	return Eigen::Vector3d(lin_vel_x, lin_vel_y, lin_vel_z);
}
Example #6
0
void draw()
{
    glColor4f(0.0, 0.0, 1.0, 0.5);
    glLineWidth(1.0);
    glBegin(GL_LINES);
    for (EdgeCIter e = mesh.edges.begin(); e != mesh.edges.end(); e ++) {
        Eigen::Vector3d a = e->he->vertex->position;
        Eigen::Vector3d b = e->he->flip->vertex->position;
            
        glVertex3d(a.x(), a.y(), a.z());
        glVertex3d(b.x(), b.y(), b.z());
    }
    
    glEnd();
    
    for (VertexIter v = mesh.vertices.begin(); v != mesh.vertices.end(); v++) {
        if (v->handle) {
            glColor4f(0.0, 1.0, 0.0, 0.5);
            glPointSize(4.0);
            glBegin(GL_POINTS);
            glVertex3d(v->position.x(), v->position.y(), v->position.z());
            glEnd();
        }
        
        if (v->anchor) {
            glColor4f(1.0, 0.0, 0.0, 0.5);
            glPointSize(2.0);
            glBegin(GL_POINTS);
            glVertex3d(v->position.x(), v->position.y(), v->position.z());
            glEnd();
        }
    }
}
Example #7
0
 inline VoxelGrid::GRID_INDEX GetNextFromGradient(const VoxelGrid::GRID_INDEX& index, const Eigen::Vector3d& gradient) const
 {
     // Given the gradient, pick the "best fit" of the 26 neighboring points
     VoxelGrid::GRID_INDEX next_index = index;
     double half_resolution = GetResolution() * 0.5;
     if (gradient.x() > half_resolution)
     {
         next_index.x++;
     }
     else if (gradient.x() < -half_resolution)
     {
         next_index.x--;
     }
     if (gradient.y() > half_resolution)
     {
         next_index.y++;
     }
     else if (gradient.y() < -half_resolution)
     {
         next_index.y--;
     }
     if (gradient.z() > half_resolution)
     {
         next_index.z++;
     }
     else if (gradient.z() < -half_resolution)
     {
         next_index.z--;
     }
     return next_index;
 }
Example #8
0
  inline void BasisSet::pointD(BasisSet *set, const Eigen::Vector3d &delta,
                               const double &dr2, int basis,
                               Eigen::MatrixXd &out)
  {
    // D type orbitals have six components and each component has a different
    // independent MO weighting. Many things can be cached to save time though
    double xx = 0.0, yy = 0.0, zz = 0.0, xy = 0.0, xz = 0.0, yz = 0.0;

    // Now iterate through the D type GTOs and sum their contributions
    unsigned int cIndex = set->m_cIndices[basis];
    for (unsigned int i = set->m_gtoIndices[basis];
         i < set->m_gtoIndices[basis+1]; ++i) {
      // Calculate the common factor
      double tmpGTO = exp(-set->m_gtoA[i] * dr2);
      xx += set->m_gtoCN[cIndex++] * tmpGTO; // Dxx
      yy += set->m_gtoCN[cIndex++] * tmpGTO; // Dyy
      zz += set->m_gtoCN[cIndex++] * tmpGTO; // Dzz
      xy += set->m_gtoCN[cIndex++] * tmpGTO; // Dxy
      xz += set->m_gtoCN[cIndex++] * tmpGTO; // Dxz
      yz += set->m_gtoCN[cIndex++] * tmpGTO; // Dyz
    }

    // Save values to the matrix
    int baseIndex = set->m_moIndices[basis];
    out.coeffRef(baseIndex  , 0) = delta.x() * delta.x() * xx;
    out.coeffRef(baseIndex+1, 0) = delta.y() * delta.y() * yy;
    out.coeffRef(baseIndex+2, 0) = delta.z() * delta.z() * zz;
    out.coeffRef(baseIndex+3, 0) = delta.x() * delta.y() * xy;
    out.coeffRef(baseIndex+4, 0) = delta.x() * delta.z() * xz;
    out.coeffRef(baseIndex+5, 0) = delta.y() * delta.z() * yz;
  }
Example #9
0
  bool RobotLaser::write(std::ostream& os) const
  {
    os << _laserParams.type << " " << _laserParams.firstBeamAngle << " " << _laserParams.fov << " "
      << _laserParams.angularStep << " " << _laserParams.maxRange << " " << _laserParams.accuracy << " "
      << _laserParams.remissionMode << " ";
    os << ranges().size();
    for (size_t i = 0; i < ranges().size(); ++i)
      os << " " << ranges()[i];
    os << " " << _remissions.size();
    for (size_t i = 0; i < _remissions.size(); ++i)
      os << " " << _remissions[i];

    // odometry pose
    Eigen::Vector3d p = (_odomPose * _laserParams.laserPose).toVector();
    os << " " << p.x() << " " << p.y() << " " << p.z();
    p = _odomPose.toVector();
    os << " " << p.x() << " " << p.y() << " " << p.z();

    // crap values
    os << FIXED(" " <<  _laserTv << " " <<  _laserRv << " " << _forwardSafetyDist << " "
        << _sideSaftyDist << " " << _turnAxis);
    os << FIXED(" " << timestamp() << " " << hostname() << " " << loggerTimestamp());

    return os.good();
  }
Example #10
0
 partition::extents_type expanded_( const partition::extents_type& extents, const Eigen::Vector3d& resolution )
 {
     Eigen::Vector3d floor = extents.min() - resolution / 2;
     Eigen::Vector3d ceil = extents.max() + resolution / 2;
     return partition::extents_type( Eigen::Vector3d( std::floor( floor.x() ), std::floor( floor.y() ), std::floor( floor.z() ) )
                                   , Eigen::Vector3d( std::ceil( ceil.x() ), std::ceil( ceil.y() ), std::ceil( ceil.z() ) ) );
 }
Example #11
0
  int TextRenderer::draw( const Eigen::Vector3d &pos, const QString &string )
  {
    assert(d->textmode);
    if( string.isEmpty() ) return 0;

    const QFontMetrics fontMetrics ( d->font );
    int w = fontMetrics.width(string);
    int h = fontMetrics.height();

    Eigen::Vector3d wincoords = d->glwidget->camera()->project(pos);

    // project is in QT window coordinates
    wincoords.y() = d->glwidget->height() - wincoords.y();

    wincoords.x() -= w/2;
    wincoords.y() += h/2;

    glPushMatrix();
    glLoadIdentity();
    glTranslatef( static_cast<int>(wincoords.x()),
        static_cast<int>(wincoords.y()),
        -wincoords.z() );
    d->do_draw(string);
    glPopMatrix();
    return h;
  }
Example #12
0
void mesh_core::Plane::leastSquaresGeneral(
      const EigenSTL::vector_Vector3d& points,
      Eigen::Vector3d* average)
{
  if (points.empty())
  {
    normal_ = Eigen::Vector3d(0,0,1);
    d_ = 0;
    if (average)
      *average = Eigen::Vector3d::Zero();
    return;
  }

  // find c, the average of the points
  Eigen::Vector3d c;
  c.setZero();

  EigenSTL::vector_Vector3d::const_iterator p = points.begin();
  EigenSTL::vector_Vector3d::const_iterator end = points.end();
  for ( ; p != end ; ++p)
    c += *p;

  c *= 1.0/double(points.size());

  // Find the matrix
  Eigen::Matrix3d m;
  m.setZero();

  p = points.begin();
  for ( ; p != end ; ++p)
  {
    Eigen::Vector3d cp = *p - c;
    m(0,0) += cp.x() * cp.x();
    m(1,0) += cp.x() * cp.y();
    m(2,0) += cp.x() * cp.z();
    m(1,1) += cp.y() * cp.y();
    m(2,1) += cp.y() * cp.z();
    m(2,2) += cp.z() * cp.z();
  }
  m(0,1) = m(1,0);
  m(0,2) = m(2,0);
  m(1,2) = m(2,1);

  Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigensolver(m);
  if (eigensolver.info() == Eigen::Success)
  {
    normal_ = eigensolver.eigenvectors().col(0);
    normal_.normalize();
  }
  else
  {
    normal_ = Eigen::Vector3d(0,0,1);
  }

  d_ = -c.dot(normal_);

  if (average)
    *average = c;
}
Example #13
0
double errorOfLineInPlane(Segment_3 &l, Eigen::Vector3d& point, Eigen::Vector3d& normal)
{
	Plane_3 plane( Point_3(point.x(), point.y(), point.z()), 
				  Vector_3(normal.x(), normal.y(), normal.z()) );		
	double dist1 = squared_distance(plane, l.point(0));
	double dist2 = squared_distance(plane, l.point(1));
	return 0.5*(sqrt(dist1)+sqrt(dist2));
}
Example #14
0
 inline Eigen::Matrix3d _skew(const Eigen::Vector3d& t){
   Eigen::Matrix3d S;
   S <<
     0,  -t.z(),   t.y(),
     t.z(),     0,     -t.x(),
     -t.y(),     t.x(),   0;
   return S;
 }
Example #15
0
 Eigen::Vector3d Camera::unProject(const Eigen::Vector3d & v) const
 {
   GLint viewport[4] = {0, 0, parent()->width(), parent()->height() };
   Eigen::Vector3d pos;
   gluUnProject(v.x(), parent()->height() - v.y(), v.z(),
                d->modelview.data(), d->projection.data(), viewport, &pos.x(), &pos.y(), &pos.z());
   return pos;
 }
CircularGroundPath::CircularGroundPath( Eigen::Vector3d _start_point, Eigen::Vector3d _target_point, double _angular_speed, MovementDirection _direction ):
  start_point_(_start_point.x(),_start_point.y()),
  end_point_(_target_point.x(),_target_point.y()),
  angular_speed_(_angular_speed),
  direction_(_direction)
{
  
}
Eigen::Vector3d MetricRectification::normalizeLine(Eigen::Vector3d p0, Eigen::Vector3d p1)
{
	Eigen::Vector3d l = p0.cross(p1);
	l.x() = l.x() / l.z();
	l.y() = l.y() / l.z();
	l.z() = 1.0;
	//return l;
	return p0.cross(p1).normalized();
}
Example #18
0
double errorOfCoplanar(Eigen::Vector3d &pt1, Eigen::Vector3d &normal1, Eigen::Vector3d &pt2, Eigen::Vector3d &normal2)
{
    double err1 = 1-std::abs(normal1.dot(normal2));

    Point_3 point(pt1.x(), pt1.y(), pt1.z());
    Plane_3 p2(Point_3(pt2.x(), pt2.y(), pt2.z()), Vector_3(normal2.x(), normal2.y(), normal2.z()));
    double dist1 = squared_distance(p2, point);
    return err1 + sqrt(dist1);
}
//! Calculate the geodetic latitude from Cartesian position and offset of z-intercept.
double calculateGeodeticLatitude( const Eigen::Vector3d cartesianState,
                                  const double zInterceptOffset )
{
    // Calculate Cartesian coordinates, Montenbruck and Gill (2000), Eq. (5.88b).
    return std::atan2( cartesianState.z( ) +
                       zInterceptOffset, std::sqrt(
                           cartesianState.x( ) * cartesianState.x( ) +
                           cartesianState.y( ) * cartesianState.y( ) ) );
}
bool BoundingBox::intersect(const Eigen::Vector3d& origin, const Eigen::Vector3d& direction,
                            double& dist) const
{
    double ox = origin.x();
    double dx = direction.x();
    double tMin, tMax;
    if (dx >= 0) {
        tMin = (min.x() - ox) / dx;
        tMax = (max.x() - ox) / dx;

    } else {
        tMin = (max.x() - ox) / dx;
        tMax = (min.x() - ox) / dx;
    }

    double oy = origin.y();
    double dy = direction.y();
    double tyMin, tyMax;
    if (dy >= 0) {
        tyMin = (min.y() - oy) / dy;
        tyMax = (max.y() - oy) / dy;

    } else {
        tyMin = (max.y() - oy) / dy;
        tyMax = (min.y() - oy) / dy;
    }

    if (tMin > tyMax || tyMin > tMax) {
        return false;
    }

    if (tyMin > tMin) tMin = tyMin;
    if (tyMax < tMax) tMax = tyMax;

    double oz = origin.z();
    double dz = direction.z();
    double tzMin, tzMax;
    if (dz >= 0) {
        tzMin = (min.z() - oz) / dz;
        tzMax = (max.z() - oz) / dz;

    } else {
        tzMin = (max.z() - oz) / dz;
        tzMax = (min.z() - oz) / dz;
    }

    if (tMin > tzMax || tzMin > tMax) {
        return false;
    }

    if (tzMin > tMin) tMin = tzMin;
    if (tzMax < tMax) tMax = tzMax;

    dist = tMin;
    return true;
}
//! Calculate the altitude over an oblate spheroid of a position vector from auxiliary variables.
double calculateAltitudeOverOblateSpheroid( const Eigen::Vector3d cartesianState,
                                            const double zInterceptOffset,
                                            const double interceptToSurfaceDistance )
{
    // Calculate Cartesian coordinates, Montenbruck and Gill (2000), Eq. (5.88c).
    return std::sqrt( cartesianState.x( ) * cartesianState.x( ) +
                      cartesianState.y( ) * cartesianState.y( ) +
                      ( cartesianState.z( ) + zInterceptOffset ) *
                      ( cartesianState.z( ) + zInterceptOffset ) ) - interceptToSurfaceDistance;
}
 void RotateSelectionDialog::setAxis(const Eigen::Vector3d &axis,
                                     const Eigen::Vector3d &offset)
 {
   ui.spin_vx->setValue(axis.x());
   ui.spin_vy->setValue(axis.y());
   ui.spin_vz->setValue(axis.z());
   ui.spin_tx->setValue(offset.x());
   ui.spin_ty->setValue(offset.y());
   ui.spin_tz->setValue(offset.z());
 }
VirtualImpedanceForce::VirtualImpedanceForce(ros::NodeHandle & n_  , Eigen::Vector3d kp , Eigen::Vector3d kd):ForceField(n_)
{
    kp_mat << kp.x(), 0, 0,
            0, kp.y(), 0,
            0, 0, kp.z();
    kd_mat << kd.x(), 0, 0,
            0, kd.y(), 0,
            0, 0, kd.z();
    std::cout << "child constructor" << std::endl;
}
// helper function to avoid code duplication
static inline kinematic_constraints::ConstraintEvaluationResult finishPositionConstraintDecision(const Eigen::Vector3d &pt, const Eigen::Vector3d &desired, const std::string &name,
                                                                                                 double weight, bool result, bool verbose)
{
  if (verbose)
    ROS_INFO("Position constraint %s on link '%s'. Desired: %f, %f, %f, current: %f, %f, %f",
             result ? "satisfied" : "violated", name.c_str(), desired.x(), desired.y(), desired.z(), pt.x(), pt.y(), pt.z());
  double dx = desired.x() - pt.x();
  double dy = desired.y() - pt.y();
  double dz = desired.z() - pt.z(); 
  return ConstraintEvaluationResult(result, weight * sqrt(dx * dx + dy * dy + dz * dz));
}
Example #25
0
void BoundingBox::expandToInclude(const Eigen::Vector3d& p)
{
    if (min.x() > p.x()) min.x() = p.x();
    if (min.y() > p.y()) min.y() = p.y();
    if (min.z() > p.z()) min.z() = p.z();
    
    if (max.x() < p.x()) max.x() = p.x();
    if (max.y() < p.y()) max.y() = p.y();
    if (max.z() < p.z()) max.z() = p.z();
    
    extent = max - min;
}
Example #26
0
  void
  Execute (vtkObject *caller, unsigned long vtkNotUsed(eventId), void* vtkNotUsed(callData))
  {
    vtkRenderWindowInteractor *interactor = vtkRenderWindowInteractor::SafeDownCast (caller);
    vtkRenderer *renderer = interactor->FindPokedRenderer (interactor->GetEventPosition ()[0],
                                                           interactor->GetEventPosition ()[1]);

    std::string key (interactor->GetKeySym ());
    bool shift_down = interactor->GetShiftKey();

    cout << "Key Pressed: " << key << endl;

    Scene *scene = Scene::instance ();
    OutofcoreCloud *cloud = static_cast<OutofcoreCloud*> (scene->getObjectByName ("my_octree"));

    if (key == "Up" || key == "Down")
    {
      if (key == "Up" && cloud)
      {
        if (shift_down)
        {
          cloud->increaseLodPixelThreshold();
        }
        else
        {
          cloud->setDisplayDepth (cloud->getDisplayDepth () + 1);
        }
      }
      else if (key == "Down" && cloud)
      {
        if (shift_down)
        {
          cloud->decreaseLodPixelThreshold();
        }
        else
        {
          cloud->setDisplayDepth (cloud->getDisplayDepth () - 1);
        }
      }
    }

    if (key == "o")
    {
      cloud->setDisplayVoxels(1-static_cast<int> (cloud->getDisplayVoxels()));
    }

    if (key == "Escape")
    {
      Eigen::Vector3d min (cloud->getBoundingBoxMin ());
      Eigen::Vector3d max (cloud->getBoundingBoxMax ());
      renderer->ResetCamera (min.x (), max.x (), min.y (), max.y (), min.z (), max.z ());
    }
  }
void WallBallWidget::updateUsers(){
    bool userFlags[NUM_USERS];
    for (int i = 0; i < NUM_USERS; ++i)
        userFlags[i] = false;

    AppUserMap::iterator uit;
    // for each user
    for(uit = users_.begin();uit!=users_.end();uit++){

        // will return the existing ball if user already exists for it
        GOBall* ball = WallBall::newBall(uit->first);
                
        AppUser appUser = uit->second;
        Eigen::Vector3d torso = appUser.jtPosByName("torso");
        Eigen::Vector3d lShoulder = appUser.jtPosByName("left_shoulder");
        Eigen::Vector3d rShoulder = appUser.jtPosByName("right_shoulder");
        Eigen::Vector3d head = appUser.jtPosByName("head");
        Eigen::Vector3d lHand = appUser.jtPosByName("left_hand");
        Eigen::Vector3d rHand = appUser.jtPosByName("right_hand");
        Eigen::Vector3d lElbow = appUser.jtPosByName("left_elbow");
        Eigen::Vector3d rElbow = appUser.jtPosByName("right_elbow");

        double leanOffset =lElbow.x() - lHand.x();
        //double leanOffset = abs(torso.x() - rHand.x()) - abs(torso.x() - lHand.x());
        //double leanOffset = torso.x() - (lShoulder.x() + rShoulder.x())/2.0f;
 
        /*if (abs(leanOffset) < 25)
            leanOffset = 0.0f;
        else if (abs(leanOffset) < 45)
            leanOffset = leanOffset / abs(leanOffset) * 30.0f;
        else
        leanOffset = leanOffset / abs(leanOffset) * 50.0f;*/

        InputManager::SetMoveDirection(uit->first, leanOffset/500.0f);

        //bool jump = lHand.y() > head.y() && rHand.y() > head.y();
        bool jump = rHand.y() > rShoulder.y();
        InputManager::SetJump(uit->first, jump);

        userFlags[uit->first] = true;
    }

    for (int i = 0; i < NUM_USERS; ++i) {
        // if a user left, remove their ball from the game
        if (userFlags[i] == false && lastUserFlags[i] == true) {
            WallBall::removeBall(i);
        }

        lastUserFlags[i] = userFlags[i];
    }
}
Example #28
0
calin::ix::iact_data::instrument_layout::ArrayLayout*
calin::simulation::vs_optics::dc_parameters_to_array_layout(
  const ix::simulation::vs_optics::IsotropicDCArrayParameters& param,
  calin::ix::iact_data::instrument_layout::ArrayLayout* d)
{
  if(d == nullptr)d = new calin::ix::iact_data::instrument_layout::ArrayLayout;
  d->set_array_type(calin::ix::iact_data::instrument_layout::ArrayLayout::NO_ARRAY);
  *d->mutable_array_origin() = param.array_origin();

  std::vector<Eigen::Vector3d> scope_pos;
  if(param.array_layout_case() ==
     IsotropicDCArrayParameters::kHexArrayLayout)
  {
    const auto& layout = param.hex_array_layout();
    double spacing     = layout.scope_spacing();
    bool array_parity  = layout.scope_labeling_parity();

    unsigned num_telescopes =
        math::hex_array::ringid_to_nsites_contained(layout.num_scope_rings());
    std::set<unsigned> scopes_missing;
    for(auto hexid : layout.scope_missing_list())
      scopes_missing.insert(hexid);

    for(unsigned hexid=0; hexid<num_telescopes; hexid++)
      if(scopes_missing.find(hexid) == scopes_missing.end())
      {
        Eigen::Vector3d pos;
        math::hex_array::hexid_to_xy(hexid, pos.x(), pos.y());
        if(array_parity)pos.x() = -pos.x();
        pos.x()  = pos.x() * spacing;
        pos.y()  = pos.y() * spacing;
        scope_pos.push_back(pos);
      }
  }
  else if(param.array_layout_case() ==
          IsotropicDCArrayParameters::kPrescribedArrayLayout)
  {
    for(auto pos : param.prescribed_array_layout().scope_positions())
      scope_pos.emplace_back(calin::math::vector3d_util::from_proto(pos));
  }
  else
  {
    assert(0);
  }

  for(unsigned i=0; i<scope_pos.size(); i++)
    dc_parameters_to_telescope_layout(param, i, scope_pos[i], d->add_telescopes());

  return d;
}
Example #29
0
void FeatureTracker::undistortedPoints()
{
    cur_un_pts.clear();
    cur_un_pts_map.clear();
    //cv::undistortPoints(cur_pts, un_pts, K, cv::Mat());
    for (unsigned int i = 0; i < cur_pts.size(); i++)
    {
        Eigen::Vector2d a(cur_pts[i].x, cur_pts[i].y);
        Eigen::Vector3d b;
        m_camera->liftProjective(a, b);
        cur_un_pts.push_back(cv::Point2f(b.x() / b.z(), b.y() / b.z()));
        cur_un_pts_map.insert(make_pair(ids[i], cv::Point2f(b.x() / b.z(), b.y() / b.z())));
        //printf("cur pts id %d %f %f", ids[i], cur_un_pts[i].x, cur_un_pts[i].y);
    }
    // caculate points velocity
    if (!prev_un_pts_map.empty())
    {
        double dt = cur_time - prev_time;
        pts_velocity.clear();
        for (unsigned int i = 0; i < cur_un_pts.size(); i++)
        {
            if (ids[i] != -1)
            {
                std::map<int, cv::Point2f>::iterator it;
                it = prev_un_pts_map.find(ids[i]);
                if (it != prev_un_pts_map.end())
                {
                    double v_x = (cur_un_pts[i].x - it->second.x) / dt;
                    double v_y = (cur_un_pts[i].y - it->second.y) / dt;
                    pts_velocity.push_back(cv::Point2f(v_x, v_y));
                }
                else
                    pts_velocity.push_back(cv::Point2f(0, 0));
            }
            else
            {
                pts_velocity.push_back(cv::Point2f(0, 0));
            }
        }
    }
    else
    {
        for (unsigned int i = 0; i < cur_pts.size(); i++)
        {
            pts_velocity.push_back(cv::Point2f(0, 0));
        }
    }
    prev_un_pts_map = cur_un_pts_map;
}
Example #30
0
void Viewer::setCameraPosition ( const Eigen::Vector3d& position, const Eigen::Vector3d& orientation )
{
    Eigen::Vector3d p = position - *m_offset;
    camera()->setUpVector( QVector3D( 0, 0, m_z_up ? 1 : -1 ) );
    camera()->setEye( QVector3D( p.x(), p.y(), p.z() ) );
    double cos_yaw = std::cos( orientation.z() );
    double sin_yaw = std::sin( orientation.z() );
    double sin_pitch = std::sin( orientation.y() );
    double cos_pitch = std::cos( orientation.y() );
    Eigen::Vector3d direction( cos_pitch * cos_yaw, cos_pitch * sin_yaw, sin_pitch ); // todo: quick and dirty, forget about roll for now
    Eigen::Vector3d scene_center = p + direction * 50; // quick and dirty
    Eigen::Vector3d where = p + direction;
    camera()->setCenter( QVector3D( where.x(), where.y(), where.z() ) );
    m_sceneCenter = QVector3D( scene_center.x(), scene_center.y(), scene_center.z() );
}