bool ZMeshFilterManifold::buildManifoldAndPerformFiltering(const Eigen::MatrixXf& input, 
		const Eigen::MatrixXf& etaK, const std::vector<bool>& clusterK, 
		float sigma_s, float sigma_r, int currentTreeLevel)
	{
		int inputSize = input.rows();;

		static std::string fileName("etaK.txt");
		fileName += "0";
		ZFileHelper::saveEigenMatrixToFile(fileName.c_str(), etaK);

		// splatting: project the vertices onto the current manifold etaK

		// NOTE: the sigma should be recursive!!
		float sigmaR_over_sqrt_2 = sigma_r/sqrt(2.0);
		Eigen::MatrixXf diffX = input.block(0, spatialDim_, inputSize, rangeDim_) - etaK.block(0, spatialDim_, inputSize, rangeDim_);
		Eigen::VectorXf gaussianDistWeight(inputSize);
		//std::cout << "diffX=\n" << diffX.block(0,0,10,rangeDim_+spatialDim_) << "\n";
		for (int i=0; i<inputSize; i++)
		{
			gaussianDistWeight(i) = ZKernelFuncs::GaussianKernelFunc(diffX.row(i), sigmaR_over_sqrt_2);
		}

		Eigen::MatrixXf psiSplat(inputSize, spatialDim_+rangeDim_+1);
		Eigen::VectorXf psiSplat0 = gaussianDistWeight;
		//////////////////////////////////////////////////////////////////////////
		// for debug
		//std::stringstream ss;
		static int etaI = 1;
		//ss << "gaussianWeights" << etaI << ".txt";
		//std::cout << ZConsoleTools::green << etaI << "\n" << ZConsoleTools::white;
		etaI++;
		//ZFileHelper::saveEigenVectorToFile(ss.str().c_str(), gaussianDistWeight);
		//////////////////////////////////////////////////////////////////////////
		psiSplat.block(0,0,inputSize,spatialDim_) = input.block(0,0,inputSize,spatialDim_);
		for (int i=0; i<inputSize; i++)
		{
			//psiSplat.block(i, spatialDim_, 1, rangeDim_) = input.block(i, spatialDim_, 1, rangeDim_)*gaussianDistWeight(i);
			psiSplat.block(i, spatialDim_, 1, rangeDim_) = etaK.block(i, spatialDim_, 1, rangeDim_)*gaussianDistWeight(i);
		}
		psiSplat.col(spatialDim_+rangeDim_) = gaussianDistWeight;

		// save min distance to later perform adjustment of outliers -- Eq.(10)
		// UNDO
		// update min_pixel_dist_to_manifold_square_
		Eigen::VectorXf pixelDist2Manifold(inputSize);
		for (int i=0; i<inputSize; i++)
		{
			if (clusterK[i])
				pixelDist2Manifold(i) = diffX.row(i).squaredNorm();
			else
				pixelDist2Manifold(i) = FLT_MAX;
		}
		min_pixel_dist_to_manifold_squared_ = min_pixel_dist_to_manifold_squared_.cwiseMin(pixelDist2Manifold);

		// Blurring
		Eigen::MatrixXf wkiPsiBlur(inputSize, rangeDim_);
		Eigen::VectorXf wkiPsiBlur0(inputSize);
		//Eigen::MatrixXf psiSplatAnd0(inputSize, spatialDim_+rangeDim_+1);
		//psiSplatAnd0.block(0, 0, inputSize, spatialDim_+rangeDim_) = psiSplat.block(0, 0, inputSize, spatialDim_+rangeDim_);
		//psiSplatAnd0.col(spatialDim_+rangeDim_) = psiSplat0;
		//psiSplatAnd0.block(0, 0, inputSize, spatialDim_+rangeDim_) = input;
		//psiSplatAnd0.col(spatialDim_+rangeDim_).fill(1.f);
		//pGaussianFilter_->setKernelFunc(ZKernelFuncs::GaussianKernelFuncNormal3);
		pGaussianFilter_->setKernelFunc(ZKernelFuncs::GaussianKernelFuncA);
		//pGaussianFilter_->setKernelFunc(NULL);
		//pGaussianFilter_->setKernelFunc(ZKernelFuncs::GaussianKernelSphericalFunc);
		pGaussianFilter_->setPara(ZMeshFilterParaNames::SpatialSigma, sigma_s);
		pGaussianFilter_->setPara(ZMeshFilterParaNames::RangeSigma, sigmaR_over_sqrt_2);
		//pGaussianFilter_->apply(psiSplatAnd0, clusterK);
		//CHECK_FALSE_AND_RETURN(pGaussianFilter_->apply(psiSplatAnd0, spatialDim_, rangeDim_+1, Eigen::VectorXf(), clusterK));
		CHECK_FALSE_AND_RETURN(pGaussianFilter_->apply(psiSplat, spatialDim_, rangeDim_+1, gaussianDistWeight, clusterK));
		Eigen::MatrixXf wkiPsiBlurAnd0 = pGaussianFilter_->getResult();
		wkiPsiBlur = wkiPsiBlurAnd0.block(0, spatialDim_, inputSize, rangeDim_);
		wkiPsiBlur0 = wkiPsiBlurAnd0.col(spatialDim_+rangeDim_);
		//ZFileHelper::saveEigenMatrixToFile("")
// 		std::cout << "wkiPsiBlurAnd0=\n" << wkiPsiBlurAnd0.block(0,0,10,rangeDim_+spatialDim_+1) << "\n";
// 		std::cout << "wkiPsiBlur0=\n" << wkiPsiBlur0.head(10) << "\n";

		//std::cout << "pixelDist2Manifold=\n" << pixelDist2Manifold.head(10) << "\n";
		//std::cout << "min_pixel_dist_to_manifold_squared=\n" << min_pixel_dist_to_manifold_squared_.head(10) << "\n";

		// for debug
// 		for (int i=0; i<inputSize; i++)
// 		{
// 			if (!g_isInfinite(wkiPsiBlur(i,0)))
// 				std::cout << "(" << i << "," << 0 << ")\n";
// 			if (!g_isInfinite(wkiPsiBlur(i,1)))
// 				std::cout << "(" << i << "," << 1 << ")\n";
// 			//if (!g_isInfinite(wkiPsiBlur(i,2)))
// 			//	std::cout << "(" << i << "," << 2 << ")\n";
// 		}
		//std::cout << wkiPsiBlur.norm() << "\n";

		Eigen::VectorXf rangeDiff(inputSize);
		for (int i=0; i<inputSize; i++)
		{
			Eigen::VectorXf n0 = wkiPsiBlur.row(i);
			Eigen::VectorXf n1 = input.row(i).tail(rangeDim_);
			n0.normalize();
			n1.normalize();
			rangeDiff(i) = 1.f-n0.dot(n1);
		}
		static bool bSaved = false;
		if (!bSaved)
		{
			ZFileHelper::saveEigenVectorToFile("rangeDiff.txt", rangeDiff);
			ZFileHelper::saveEigenVectorToFile("gaussian.txt", gaussianDistWeight);
			ZFileHelper::saveEigenMatrixToFile("splat.txt", psiSplat);
			ZFileHelper::saveEigenMatrixToFile("blur.txt", wkiPsiBlur);
			bSaved = true;
		}

		// Slicing
		Eigen::VectorXf wki = gaussianDistWeight;
		for (int i=0; i<inputSize; i++)
		{
			if (!clusterK[i]) continue;
			sum_w_ki_Psi_blur_.row(i) += wkiPsiBlur.row(i)*wki(i);
			sum_w_ki_Psi_blur_0_(i) += wkiPsiBlur0(i)*wki(i);
		}
		//////////////////////////////////////////////////////////////////////////
		// for debug
		wki_Psi_blurs_.push_back(Eigen::MatrixXf(inputSize, rangeDim_));
		wki_Psi_blur_0s_.push_back(Eigen::VectorXf(inputSize));
		Eigen::MatrixXf& lastM = wki_Psi_blurs_[wki_Psi_blurs_.size()-1];
		lastM.fill(0);
		Eigen::VectorXf& lastV = wki_Psi_blur_0s_[wki_Psi_blur_0s_.size()-1];
		lastV.fill(0);
		for (int i=0; i<inputSize; i++)
		{
			if (!clusterK[i]) continue;
			lastM.row(i) = wkiPsiBlur.row(i)*wki(i);
			lastV(i) = wkiPsiBlur0(i)*wki(i);
		}
		std::cout << sum_w_ki_Psi_blur_.norm() << "\n";
		//////////////////////////////////////////////////////////////////////////

		// compute two new manifolds eta_minus and eta_plus

		// test stopping criterion
		if (currentTreeLevel<filterPara_.tree_height)
		{
			// algorithm 1, Step 2: compute the eigenvector v1
			Eigen::VectorXf v1 = computeMaxEigenVector(diffX, clusterK);

			// algorithm 1, Step 3: Segment vertices into two clusters
			std::vector<bool> clusterMinus(inputSize, false);
			std::vector<bool> clusterPlus(inputSize, false);
			int countMinus=0;
			int countPlus =0;
			for (int i=0; i<inputSize; i++)
			{
				float dot = diffX.row(i).dot(v1);
				if (dot<0 && clusterK[i]) {countMinus++; verticeClusterIds[i] =etaI+0.5; clusterMinus[i] = true;}
				if (dot>=0 && clusterK[i]) {countPlus++; verticeClusterIds[i] =etaI-0.5; clusterPlus[i] = true;}
			}
			std::cout << "Minus manifold: " << countMinus << "\n";
			std::cout << "Plus manifold: " << countPlus << "\n"; 
// 			Eigen::MatrixXf diffXManifold(inputSize, spatialDim_+rangeDim_);
// 			diffXManifold.block(0, 0, inputSize, spatialDim_) = input.block(0, 0, inputSize, spatialDim_);
// 			diffXManifold.block(0, spatialDim_, inputSize, rangeDim_) = diffX;

			// algorithm 1, Step 4: Compute new manifolds by weighted low-pass filtering  -- Eq. (7)(8)
			Eigen::VectorXf theta(inputSize);
			theta.fill(1);
			theta = theta - wki.cwiseProduct(wki);
			pGaussianFilter_->setKernelFunc(NULL);
			CHECK_FALSE_AND_RETURN(pGaussianFilter_->apply(input, spatialDim_, rangeDim_, theta, clusterMinus));
			Eigen::MatrixXf etaMinus = pGaussianFilter_->getResult();
			CHECK_FALSE_AND_RETURN(pGaussianFilter_->apply(input, spatialDim_, rangeDim_, theta, clusterPlus));
			Eigen::MatrixXf etaPlus = pGaussianFilter_->getResult();

			// algorithm 1, Step 5: recursively build more manifolds
			CHECK_FALSE_AND_RETURN(buildManifoldAndPerformFiltering(input, etaMinus, clusterMinus, sigma_s, sigma_r, currentTreeLevel+1));
			CHECK_FALSE_AND_RETURN(buildManifoldAndPerformFiltering(input, etaPlus, clusterPlus, sigma_s, sigma_r, currentTreeLevel+1));
		}

		return true;
	}