bool ExPolygonCollection::contains_b(const Point &point) const { for (ExPolygons::const_iterator it = this->expolygons.begin(); it != this->expolygons.end(); ++it) { if (it->contains_b(point)) return true; } return false; }
void MotionPlanner::shortest_path(const Point &from, const Point &to, Polyline* polyline) { if (!this->initialized) this->initialize(); if (this->islands.empty()) { polyline->points.push_back(from); polyline->points.push_back(to); return; } // Are both points in the same island? int island_idx = -1; for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) { if (island->contains(from) && island->contains(to)) { // since both points are in the same island, is a direct move possible? // if so, we avoid generating the visibility environment if (island->contains(Line(from, to))) { polyline->points.push_back(from); polyline->points.push_back(to); return; } island_idx = island - this->islands.begin(); break; } } // Now check whether points are inside the environment. Point inner_from = from; Point inner_to = to; bool from_is_inside, to_is_inside; if (island_idx == -1) { if (!(from_is_inside = this->outer.contains(from))) { // Find the closest inner point to start from. from.nearest_point(this->outer, &inner_from); } if (!(to_is_inside = this->outer.contains(to))) { // Find the closest inner point to start from. to.nearest_point(this->outer, &inner_to); } } else { if (!(from_is_inside = this->inner[island_idx].contains(from))) { // Find the closest inner point to start from. from.nearest_point(this->inner[island_idx], &inner_from); } if (!(to_is_inside = this->inner[island_idx].contains(to))) { // Find the closest inner point to start from. to.nearest_point(this->inner[island_idx], &inner_to); } } // perform actual path search MotionPlannerGraph* graph = this->init_graph(island_idx); graph->shortest_path(graph->find_node(inner_from), graph->find_node(inner_to), polyline); polyline->points.insert(polyline->points.begin(), from); polyline->points.push_back(to); }
void ExPolygonCollection::simplify(double tolerance) { ExPolygons expp; for (ExPolygons::const_iterator it = this->expolygons.begin(); it != this->expolygons.end(); ++it) { it->simplify(tolerance, expp); } this->expolygons = expp; }
Lines ExPolygonCollection::lines() const { Lines lines; for (ExPolygons::const_iterator it = this->expolygons.begin(); it != this->expolygons.end(); ++it) { Lines ex_lines = it->lines(); lines.insert(lines.end(), ex_lines.begin(), ex_lines.end()); } return lines; }
MotionPlanner::MotionPlanner(const ExPolygons &islands) : initialized(false) { ExPolygons expp; for (ExPolygons::const_iterator island = islands.begin(); island != islands.end(); ++island) island->simplify(SCALED_EPSILON, &expp); for (ExPolygons::const_iterator island = expp.begin(); island != expp.end(); ++island) this->islands.push_back(MotionPlannerEnv(*island)); }
ExtrusionEntityCollection PerimeterGenerator::_fill_gaps(double min, double max, double w, const Polygons &gaps) const { ExtrusionEntityCollection coll; min *= (1 - INSET_OVERLAP_TOLERANCE); ExPolygons curr = diff_ex( offset2(gaps, -min/2, +min/2), offset2(gaps, -max/2, +max/2), true ); Polylines polylines; for (ExPolygons::const_iterator ex = curr.begin(); ex != curr.end(); ++ex) ex->medial_axis(max, min/2, &polylines); if (polylines.empty()) return coll; #ifdef SLIC3R_DEBUG if (!curr.empty()) printf(" %zu gaps filled with extrusion width = %f\n", curr.size(), w); #endif //my $flow = $layerm->flow(FLOW_ROLE_SOLID_INFILL, 0, $w); Flow flow( w, this->layer_height, this->solid_infill_flow.nozzle_diameter ); double mm3_per_mm = flow.mm3_per_mm(); for (Polylines::const_iterator p = polylines.begin(); p != polylines.end(); ++p) { ExtrusionPath path(erGapFill); path.polyline = *p; path.mm3_per_mm = mm3_per_mm; path.width = flow.width; path.height = this->layer_height; if (p->is_valid() && p->first_point().coincides_with(p->last_point())) { // since medial_axis() now returns only Polyline objects, detect loops here ExtrusionLoop loop; loop.paths.push_back(path); coll.append(loop); } else { coll.append(path); } } return coll; }
void MotionPlanner::initialize() { if (this->initialized) return; if (this->islands.empty()) return; // prevent initialization of empty BoundingBox ExPolygons expp; for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) { island->simplify(SCALED_EPSILON, expp); } this->islands = expp; // loop through islands in order to create inner expolygons and collect their contours this->inner.reserve(this->islands.size()); Polygons outer_holes; for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) { this->inner.push_back(ExPolygonCollection()); offset(*island, &this->inner.back().expolygons, -MP_INNER_MARGIN); outer_holes.push_back(island->contour); } // grow island contours in order to prepare holes of the outer environment // This is actually wrong because it might merge contours that are close, // thus confusing the island check in shortest_path() below //offset(outer_holes, &outer_holes, +MP_OUTER_MARGIN); // generate outer contour as bounding box of everything Points points; for (Polygons::const_iterator contour = outer_holes.begin(); contour != outer_holes.end(); ++contour) points.insert(points.end(), contour->points.begin(), contour->points.end()); BoundingBox bb(points); // grow outer contour Polygons contour; offset(bb.polygon(), &contour, +MP_OUTER_MARGIN); assert(contour.size() == 1); // make expolygon for outer environment ExPolygons outer; diff(contour, outer_holes, &outer); assert(outer.size() == 1); this->outer = outer.front(); this->graphs.resize(this->islands.size() + 1, NULL); this->initialized = true; }
void PerimeterGenerator::process() { // other perimeters this->_mm3_per_mm = this->perimeter_flow.mm3_per_mm(); coord_t pwidth = this->perimeter_flow.scaled_width(); coord_t pspacing = this->perimeter_flow.scaled_spacing(); // external perimeters this->_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm(); coord_t ext_pwidth = this->ext_perimeter_flow.scaled_width(); coord_t ext_pspacing = this->ext_perimeter_flow.scaled_spacing(); coord_t ext_pspacing2 = this->ext_perimeter_flow.scaled_spacing(this->perimeter_flow); // overhang perimeters this->_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm(); // solid infill coord_t ispacing = this->solid_infill_flow.scaled_spacing(); coord_t gap_area_threshold = pwidth * pwidth; // Calculate the minimum required spacing between two adjacent traces. // This should be equal to the nominal flow spacing but we experiment // with some tolerance in order to avoid triggering medial axis when // some squishing might work. Loops are still spaced by the entire // flow spacing; this only applies to collapsing parts. // For ext_min_spacing we use the ext_pspacing calculated for two adjacent // external loops (which is the correct way) instead of using ext_pspacing2 // which is the spacing between external and internal, which is not correct // and would make the collapsing (thus the details resolution) dependent on // internal flow which is unrelated. coord_t min_spacing = pspacing * (1 - INSET_OVERLAP_TOLERANCE); coord_t ext_min_spacing = ext_pspacing * (1 - INSET_OVERLAP_TOLERANCE); // prepare grown lower layer slices for overhang detection if (this->lower_slices != NULL && this->config->overhangs) { // We consider overhang any part where the entire nozzle diameter is not supported by the // lower layer, so we take lower slices and offset them by half the nozzle diameter used // in the current layer double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1); this->_lower_slices_p = offset(*this->lower_slices, scale_(+nozzle_diameter/2)); } // we need to process each island separately because we might have different // extra perimeters for each one for (Surfaces::const_iterator surface = this->slices->surfaces.begin(); surface != this->slices->surfaces.end(); ++surface) { // detect how many perimeters must be generated for this island signed short loop_number = this->config->perimeters + surface->extra_perimeters; loop_number--; // 0-indexed loops Polygons gaps; Polygons last = surface->expolygon.simplify_p(SCALED_RESOLUTION); if (loop_number >= 0) { // no loops = -1 std::vector<PerimeterGeneratorLoops> contours(loop_number+1); // depth => loops std::vector<PerimeterGeneratorLoops> holes(loop_number+1); // depth => loops Polylines thin_walls; // we loop one time more than needed in order to find gaps after the last perimeter was applied for (signed short i = 0; i <= loop_number+1; ++i) { // outer loop is 0 Polygons offsets; if (i == 0) { // the minimum thickness of a single loop is: // ext_width/2 + ext_spacing/2 + spacing/2 + width/2 if (this->config->thin_walls) { offsets = offset2( last, -(ext_pwidth/2 + ext_min_spacing/2 - 1), +(ext_min_spacing/2 - 1) ); } else { offsets = offset(last, -ext_pwidth/2); } // look for thin walls if (this->config->thin_walls) { Polygons diffpp = diff( last, offset(offsets, +ext_pwidth/2), true // medial axis requires non-overlapping geometry ); // the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width // (actually, something larger than that still may exist due to mitering or other causes) coord_t min_width = ext_pwidth / 2; ExPolygons expp = offset2_ex(diffpp, -min_width/2, +min_width/2); // the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop Polylines pp; for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) ex->medial_axis(ext_pwidth + ext_pspacing2, min_width, &pp); double threshold = ext_pwidth * 2; for (Polylines::const_iterator p = pp.begin(); p != pp.end(); ++p) { if (p->length() > threshold) { thin_walls.push_back(*p); } } #ifdef DEBUG printf(" %zu thin walls detected\n", thin_walls.size()); #endif /* if (false) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "medial_axis.svg", no_arrows => 1, #expolygons => \@expp, polylines => \@thin_walls, ); } */ } } else { coord_t distance = (i == 1) ? ext_pspacing2 : pspacing; if (this->config->thin_walls) { offsets = offset2( last, -(distance + min_spacing/2 - 1), +(min_spacing/2 - 1) ); } else { offsets = offset( last, -distance ); } // look for gaps if (this->config->gap_fill_speed.value > 0 && this->config->fill_density.value > 0) { // not using safety offset here would "detect" very narrow gaps // (but still long enough to escape the area threshold) that gap fill // won't be able to fill but we'd still remove from infill area ExPolygons diff_expp = diff_ex( offset(last, -0.5*distance), offset(offsets, +0.5*distance + 10) // safety offset ); for (ExPolygons::const_iterator ex = diff_expp.begin(); ex != diff_expp.end(); ++ex) { if (fabs(ex->area()) >= gap_area_threshold) { Polygons pp = *ex; gaps.insert(gaps.end(), pp.begin(), pp.end()); } } } } if (offsets.empty()) break; if (i > loop_number) break; // we were only looking for gaps this time last = offsets; for (Polygons::const_iterator polygon = offsets.begin(); polygon != offsets.end(); ++polygon) { PerimeterGeneratorLoop loop(*polygon, i); loop.is_contour = polygon->is_counter_clockwise(); if (loop.is_contour) { contours[i].push_back(loop); } else { holes[i].push_back(loop); } } } // nest loops: holes first for (signed short d = 0; d <= loop_number; ++d) { PerimeterGeneratorLoops &holes_d = holes[d]; // loop through all holes having depth == d for (signed short i = 0; i < holes_d.size(); ++i) { const PerimeterGeneratorLoop &loop = holes_d[i]; // find the hole loop that contains this one, if any for (signed short t = d+1; t <= loop_number; ++t) { for (signed short j = 0; j < holes[t].size(); ++j) { PerimeterGeneratorLoop &candidate_parent = holes[t][j]; if (candidate_parent.polygon.contains(loop.polygon.first_point())) { candidate_parent.children.push_back(loop); holes_d.erase(holes_d.begin() + i); --i; goto NEXT_LOOP; } } } // if no hole contains this hole, find the contour loop that contains it for (signed short t = loop_number; t >= 0; --t) { for (signed short j = 0; j < contours[t].size(); ++j) { PerimeterGeneratorLoop &candidate_parent = contours[t][j]; if (candidate_parent.polygon.contains(loop.polygon.first_point())) { candidate_parent.children.push_back(loop); holes_d.erase(holes_d.begin() + i); --i; goto NEXT_LOOP; } } } NEXT_LOOP: ; } } // nest contour loops for (signed short d = loop_number; d >= 1; --d) { PerimeterGeneratorLoops &contours_d = contours[d]; // loop through all contours having depth == d for (signed short i = 0; i < contours_d.size(); ++i) { const PerimeterGeneratorLoop &loop = contours_d[i]; // find the contour loop that contains it for (signed short t = d-1; t >= 0; --t) { for (signed short j = 0; j < contours[t].size(); ++j) { PerimeterGeneratorLoop &candidate_parent = contours[t][j]; if (candidate_parent.polygon.contains(loop.polygon.first_point())) { candidate_parent.children.push_back(loop); contours_d.erase(contours_d.begin() + i); --i; goto NEXT_CONTOUR; } } } NEXT_CONTOUR: ; } } // at this point, all loops should be in contours[0] ExtrusionEntityCollection entities = this->_traverse_loops(contours.front(), thin_walls); // if brim will be printed, reverse the order of perimeters so that // we continue inwards after having finished the brim // TODO: add test for perimeter order if (this->config->external_perimeters_first || (this->layer_id == 0 && this->print_config->brim_width.value > 0)) entities.reverse(); // append perimeters for this slice as a collection if (!entities.empty()) this->loops->append(entities); } // fill gaps if (!gaps.empty()) { /* if (false) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "gaps.svg", expolygons => union_ex(\@gaps), ); } */ // where $pwidth < thickness < 2*$pspacing, infill with width = 2*$pwidth // where 0.1*$pwidth < thickness < $pwidth, infill with width = 1*$pwidth std::vector<PerimeterGeneratorGapSize> gap_sizes; gap_sizes.push_back(PerimeterGeneratorGapSize(pwidth, 2*pspacing, 2*pwidth)); gap_sizes.push_back(PerimeterGeneratorGapSize(0.1*pwidth, pwidth, 1*pwidth)); for (std::vector<PerimeterGeneratorGapSize>::const_iterator gap_size = gap_sizes.begin(); gap_size != gap_sizes.end(); ++gap_size) { ExtrusionEntityCollection gap_fill = this->_fill_gaps(gap_size->min, gap_size->max, unscale(gap_size->width), gaps); this->gap_fill->append(gap_fill.entities); // Make sure we don't infill narrow parts that are already gap-filled // (we only consider this surface's gaps to reduce the diff() complexity). // Growing actual extrusions ensures that gaps not filled by medial axis // are not subtracted from fill surfaces (they might be too short gaps // that medial axis skips but infill might join with other infill regions // and use zigzag). coord_t dist = gap_size->width/2; Polygons filled; for (ExtrusionEntitiesPtr::const_iterator it = gap_fill.entities.begin(); it != gap_fill.entities.end(); ++it) { Polygons f; offset((*it)->as_polyline(), &f, dist); filled.insert(filled.end(), f.begin(), f.end()); } last = diff(last, filled); gaps = diff(gaps, filled); // prevent more gap fill here } } // create one more offset to be used as boundary for fill // we offset by half the perimeter spacing (to get to the actual infill boundary) // and then we offset back and forth by half the infill spacing to only consider the // non-collapsing regions coord_t inset = 0; if (loop_number == 0) { // one loop inset += ext_pspacing2/2; } else if (loop_number > 0) { // two or more loops inset += pspacing/2; } // only apply infill overlap if we actually have one perimeter if (inset > 0) inset -= this->config->get_abs_value("infill_overlap", inset + ispacing/2); { ExPolygons expp = union_ex(last); // simplify infill contours according to resolution Polygons pp; for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) ex->simplify_p(SCALED_RESOLUTION, &pp); // collapse too narrow infill areas coord_t min_perimeter_infill_spacing = ispacing * (1 - INSET_OVERLAP_TOLERANCE); expp = offset2_ex( pp, -inset -min_perimeter_infill_spacing/2, +min_perimeter_infill_spacing/2 ); // append infill areas to fill_surfaces for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) this->fill_surfaces->surfaces.push_back(Surface(stInternal, *ex)); // use a bogus surface type } } }
Polyline MotionPlanner::shortest_path(const Point &from, const Point &to) { // lazy generation of configuration space if (!this->initialized) this->initialize(); // if we have an empty configuration space, return a straight move if (this->islands.empty()) { Polyline p; p.points.push_back(from); p.points.push_back(to); return p; } // Are both points in the same island? int island_idx = -1; for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) { if (island->contains(from) && island->contains(to)) { // since both points are in the same island, is a direct move possible? // if so, we avoid generating the visibility environment if (island->contains(Line(from, to))) { Polyline p; p.points.push_back(from); p.points.push_back(to); return p; } island_idx = island - this->islands.begin(); break; } } // get environment ExPolygonCollection env = this->get_env(island_idx); if (env.expolygons.empty()) { // if this environment is empty (probably because it's too small), perform straight move // and avoid running the algorithms on empty dataset Polyline p; p.points.push_back(from); p.points.push_back(to); return p; // bye bye } // Now check whether points are inside the environment. Point inner_from = from; Point inner_to = to; if (!env.contains(from)) { // Find the closest inner point to start from. inner_from = this->nearest_env_point(env, from, to); } if (!env.contains(to)) { // Find the closest inner point to start from. inner_to = this->nearest_env_point(env, to, inner_from); } // perform actual path search MotionPlannerGraph* graph = this->init_graph(island_idx); Polyline polyline = graph->shortest_path(graph->find_node(inner_from), graph->find_node(inner_to)); polyline.points.insert(polyline.points.begin(), from); polyline.points.push_back(to); { // grow our environment slightly in order for simplify_by_visibility() // to work best by considering moves on boundaries valid as well ExPolygonCollection grown_env; offset(env, &grown_env.expolygons, +SCALED_EPSILON); // remove unnecessary vertices polyline.simplify_by_visibility(grown_env); } /* SVG svg("shortest_path.svg"); svg.draw(this->outer); svg.arrows = false; for (MotionPlannerGraph::adjacency_list_t::const_iterator it = graph->adjacency_list.begin(); it != graph->adjacency_list.end(); ++it) { Point a = graph->nodes[it - graph->adjacency_list.begin()]; for (std::vector<MotionPlannerGraph::neighbor>::const_iterator n = it->begin(); n != it->end(); ++n) { Point b = graph->nodes[n->target]; svg.draw(Line(a, b)); } } svg.arrows = true; svg.draw(from); svg.draw(inner_from, "red"); svg.draw(to); svg.draw(inner_to, "red"); svg.draw(*polyline, "red"); svg.Close(); */ return polyline; }
void BridgeDetector::coverage(double angle, Polygons* coverage) const { // Clone our expolygon and rotate it so that we work with vertical lines. ExPolygon expolygon = this->expolygon; expolygon.rotate(PI/2.0 - angle, Point(0,0)); /* Outset the bridge expolygon by half the amount we used for detecting anchors; we'll use this one to generate our trapezoids and be sure that their vertices are inside the anchors and not on their contours leading to false negatives. */ ExPolygons grown; offset(expolygon, &grown, this->extrusion_width/2.0); // Compute trapezoids according to a vertical orientation Polygons trapezoids; for (ExPolygons::const_iterator it = grown.begin(); it != grown.end(); ++it) it->get_trapezoids2(&trapezoids, PI/2.0); // get anchors, convert them to Polygons and rotate them too Polygons anchors; for (ExPolygons::const_iterator anchor = this->_anchors.begin(); anchor != this->_anchors.end(); ++anchor) { Polygons pp = *anchor; for (Polygons::iterator p = pp.begin(); p != pp.end(); ++p) p->rotate(PI/2.0 - angle, Point(0,0)); anchors.insert(anchors.end(), pp.begin(), pp.end()); } Polygons covered; for (Polygons::const_iterator trapezoid = trapezoids.begin(); trapezoid != trapezoids.end(); ++trapezoid) { Lines lines = trapezoid->lines(); Lines supported; intersection(lines, anchors, &supported); // not nice, we need a more robust non-numeric check for (size_t i = 0; i < supported.size(); ++i) { if (supported[i].length() < this->extrusion_width) { supported.erase(supported.begin() + i); i--; } } if (supported.size() >= 2) covered.push_back(*trapezoid); } // merge trapezoids and rotate them back Polygons _coverage; union_(covered, &_coverage); for (Polygons::iterator p = _coverage.begin(); p != _coverage.end(); ++p) p->rotate(-(PI/2.0 - angle), Point(0,0)); // intersect trapezoids with actual bridge area to remove extra margins // and append it to result intersection(_coverage, this->expolygon, coverage); /* if (0) { my @lines = map @{$_->lines}, @$trapezoids; $_->rotate(-(PI/2 - $angle), [0,0]) for @lines; require "Slic3r/SVG.pm"; Slic3r::SVG::output( "coverage_" . rad2deg($angle) . ".svg", expolygons => [$self->expolygon], green_expolygons => $self->_anchors, red_expolygons => $coverage, lines => \@lines, ); } */ }
void SLAPrint::write_svg(const std::string &outputfile) const { const Sizef3 size = this->bb.size(); const double support_material_radius = sm_pillars_radius(); FILE* f = fopen(outputfile.c_str(), "w"); fprintf(f, "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>\n" "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\" \"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n" "<svg width=\"%f\" height=\"%f\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:svg=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" xmlns:slic3r=\"http://slic3r.org/namespaces/slic3r\" viewport-fill=\"black\">\n" "<!-- Generated using Slic3r %s http://slic3r.org/ -->\n" , size.x, size.y, SLIC3R_VERSION); for (size_t i = 0; i < this->layers.size(); ++i) { const Layer &layer = this->layers[i]; fprintf(f, "\t<g id=\"layer%zu\" slic3r:z=\"%0.4f\" slic3r:slice-z=\"%0.4f\" slic3r:layer-height=\"%0.4f\">\n", i, layer.print_z, layer.slice_z, layer.print_z - ((i == 0) ? 0. : this->layers[i-1].print_z) ); if (layer.solid) { const ExPolygons &slices = layer.slices.expolygons; for (ExPolygons::const_iterator it = slices.begin(); it != slices.end(); ++it) { std::string pd = this->_SVG_path_d(*it); fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:area=\"%0.4f\" />\n", pd.c_str(), "white", "black", "0", unscale(unscale(it->area())) ); } } else { // Perimeters. for (ExPolygons::const_iterator it = layer.perimeters.expolygons.begin(); it != layer.perimeters.expolygons.end(); ++it) { std::string pd = this->_SVG_path_d(*it); fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"perimeter\" />\n", pd.c_str(), "white", "black", "0" ); } // Solid infill. for (ExPolygons::const_iterator it = layer.solid_infill.expolygons.begin(); it != layer.solid_infill.expolygons.end(); ++it) { std::string pd = this->_SVG_path_d(*it); fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"infill\" />\n", pd.c_str(), "white", "black", "0" ); } // Internal infill. for (ExtrusionEntitiesPtr::const_iterator it = layer.infill.entities.begin(); it != layer.infill.entities.end(); ++it) { const ExPolygons infill = union_ex((*it)->grow()); for (ExPolygons::const_iterator e = infill.begin(); e != infill.end(); ++e) { std::string pd = this->_SVG_path_d(*e); fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"infill\" />\n", pd.c_str(), "white", "black", "0" ); } } } // don't print support material in raft layers if (i >= (size_t)this->config.raft_layers) { // look for support material pillars belonging to this layer for (std::vector<SupportPillar>::const_iterator it = this->sm_pillars.begin(); it != this->sm_pillars.end(); ++it) { if (!(it->top_layer >= i && it->bottom_layer <= i)) continue; // generate a conic tip float radius = fminf( support_material_radius, (it->top_layer - i + 1) * this->config.layer_height.value ); fprintf(f,"\t\t<circle cx=\"%f\" cy=\"%f\" r=\"%f\" stroke-width=\"0\" fill=\"white\" slic3r:type=\"support\" />\n", unscale(it->x) - this->bb.min.x, size.y - (unscale(it->y) - this->bb.min.y), radius ); } } fprintf(f,"\t</g>\n"); } fprintf(f,"</svg>\n"); }
void SVGExport::writeSVG(const std::string &outputfile) { // align to origin taking raft into account BoundingBoxf3 bb = this->mesh.bounding_box(); if (this->config.raft_layers > 0) { bb.min.x -= this->config.raft_offset.value; bb.min.y -= this->config.raft_offset.value; bb.max.x += this->config.raft_offset.value; bb.max.y += this->config.raft_offset.value; } this->mesh.translate(-bb.min.x, -bb.min.y, -bb.min.z); // align to origin bb.translate(-bb.min.x, -bb.min.y, -bb.min.z); // align to origin const Sizef3 size = bb.size(); // if we are generating a raft, first_layer_height will not affect mesh slicing const float lh = this->config.layer_height.value; const float first_lh = this->config.first_layer_height.value; // generate the list of Z coordinates for mesh slicing // (we slice each layer at half of its thickness) std::vector<float> slice_z, layer_z; { const float first_slice_lh = (this->config.raft_layers > 0) ? lh : first_lh; slice_z.push_back(first_slice_lh/2); layer_z.push_back(first_slice_lh); } while (layer_z.back() + lh/2 <= this->mesh.stl.stats.max.z) { slice_z.push_back(layer_z.back() + lh/2); layer_z.push_back(layer_z.back() + lh); } // perform the slicing std::vector<ExPolygons> layers; TriangleMeshSlicer(&this->mesh).slice(slice_z, &layers); // generate a solid raft if requested if (this->config.raft_layers > 0) { ExPolygons raft = offset_ex(layers.front(), scale_(this->config.raft_offset)); for (int i = this->config.raft_layers; i >= 1; --i) { layer_z.insert(layer_z.begin(), first_lh + lh * (i-1)); layers.insert(layers.begin(), raft); } // prepend total raft height to all sliced layers for (int i = this->config.raft_layers; i < layer_z.size(); ++i) layer_z[i] += first_lh + lh * (this->config.raft_layers-1); } // generate support material std::vector<Points> support_material(layers.size()); if (this->config.support_material) { // generate a grid of points according to the configured spacing, // covering the entire object bounding box Points support_material_points; for (coordf_t x = bb.min.x; x <= bb.max.x; x += this->config.support_material_spacing) { for (coordf_t y = bb.min.y; y <= bb.max.y; y += this->config.support_material_spacing) { support_material_points.push_back(Point(scale_(x), scale_(y))); } } // check overhangs, starting from the upper layer, and detect which points apply // to each layer ExPolygons overhangs; for (int i = layer_z.size()-1; i >= 0; --i) { overhangs = diff_ex(union_(overhangs, layers[i+1]), layers[i]); for (Points::const_iterator it = support_material_points.begin(); it != support_material_points.end(); ++it) { for (ExPolygons::const_iterator e = overhangs.begin(); e != overhangs.end(); ++e) { if (e->contains(*it)) { support_material[i].push_back(*it); break; } } } } } double support_material_radius = this->config.support_material_extrusion_width.get_abs_value(this->config.layer_height)/2; FILE* f = fopen(outputfile.c_str(), "w"); fprintf(f, "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>\n" "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\" \"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n" "<svg width=\"%f\" height=\"%f\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:svg=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" xmlns:slic3r=\"http://slic3r.org/namespaces/slic3r\" viewport-fill=\"black\">\n" "<!-- Generated using Slic3r %s http://slic3r.org/ -->\n" , size.x, size.y, SLIC3R_VERSION); for (size_t i = 0; i < layer_z.size(); ++i) { fprintf(f, "\t<g id=\"layer%zu\" slic3r:z=\"%0.4f\">\n", i, layer_z[i]); for (ExPolygons::const_iterator it = layers[i].begin(); it != layers[i].end(); ++it) { std::string pd; Polygons pp = *it; for (Polygons::const_iterator mp = pp.begin(); mp != pp.end(); ++mp) { std::ostringstream d; d << "M "; for (Points::const_iterator p = mp->points.begin(); p != mp->points.end(); ++p) { d << unscale(p->x) << " "; d << unscale(p->y) << " "; } d << "z"; pd += d.str() + " "; } fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:area=\"%0.4f\" />\n", pd.c_str(), "white", "black", "0", unscale(unscale(it->area())) ); } for (Points::const_iterator it = support_material[i].begin(); it != support_material[i].end(); ++it) { fprintf(f,"\t\t<circle cx=\"%f\" cy=\"%f\" r=\"%f\" stroke-width=\"0\" fill=\"white\" slic3r:type=\"support\" />\n", unscale(it->x), unscale(it->y), support_material_radius ); } fprintf(f,"\t</g>\n"); } fprintf(f,"</svg>\n"); }