void RawMultiTestApp::setup() { setFrameRate(60); setWindowSize(1280, 480); PGRGuid guid; ////////////////// // setup camera 1 mErr = mBusManager.GetCameraFromIndex(0, &guid); if (mErr != PGRERROR_OK) { showError(); quit(); } mCamera1 = new FlyCapture2::Camera(); mErr = mCamera1->Connect(&guid); if (mErr != PGRERROR_OK) { showError(); mCamera1 = 0; quit(); } mCam1Data.targetSurface = Surface8u(640, 480, false); mErr = mCamera1->StartCapture(onImageGrabbed, &mCam1Data); if (mErr != PGRERROR_OK) { showError(); quit(); } ////////////////// // setup camera 2 mErr = mBusManager.GetCameraFromIndex(1, &guid); if (mErr != PGRERROR_OK) { showError(); quit(); } mCamera2 = new FlyCapture2::Camera(); mErr = mCamera2->Connect(&guid); if (mErr != PGRERROR_OK) { showError(); mCamera2 = 0; quit(); } mCam2Data.targetSurface = Surface8u(640, 480, false); mErr = mCamera2->StartCapture(onImageGrabbed, &mCam2Data); if (mErr != PGRERROR_OK) { showError(); quit(); } }
void CCflycap_set_num_framebuffers( CCflycap *ccntxt, int num_framebuffers ) { CHECK_CC(ccntxt); FlyCapture2::Camera *cam = (FlyCapture2::Camera *)ccntxt->inherited.cam; FlyCapture2::FC2Config cfg; CIPGRCHK(cam->StopCapture()); CIPGRCHK(cam->GetConfiguration(&cfg)); cfg.numBuffers = num_framebuffers; CIPGRCHK(cam->SetConfiguration(&cfg)); CIPGRCHK(cam->StartCapture()); }
int init_cam_capture ( FlyCapture2::Camera &camera, PGRGuid guid) { CameraInfo camInfo; // Connect the camera err = camera.Connect( &guid ); if ( err != PGRERROR_OK ) { std::cout << "Failed to connect to camera" << std::endl; return false; } // Get the camera info and print it out err = camera.GetCameraInfo( &camInfo ); if ( err != PGRERROR_OK ) { std::cout << "Failed to get camera info from camera" << std::endl; return false; } std::cout << camInfo.vendorName << " " << camInfo.modelName << " " << camInfo.serialNumber << std::endl; err = camera.StartCapture(); if ( err == PGRERROR_ISOCH_BANDWIDTH_EXCEEDED ) { std::cout << "Bandwidth exceeded" << std::endl; return false; } else if ( err != PGRERROR_OK ) { std::cout << "Failed to start image capture" << std::endl; return false; } }
void CCflycap_start_camera( CCflycap *ccntxt ) { CHECK_CC(ccntxt); FlyCapture2::Camera *cam = (FlyCapture2::Camera *)ccntxt->inherited.cam; CIPGRCHK(cam->StartCapture()); }
void CCflycap_CCflycap( CCflycap * ccntxt, int device_number, int NumImageBuffers, int mode_number) { // call parent CamContext_CamContext((CamContext*)ccntxt,device_number,NumImageBuffers,mode_number); // XXX cast error? ccntxt->inherited.vmt = (CamContext_functable*)&CCflycap_vmt; CAM_IFACE_CHECK_DEVICE_NUMBER(device_number); std::vector<CamMode> result; int myerr = get_mode_list(device_number, result); ccntxt->inherited.device_number = device_number; ccntxt->inherited.backend_extras = new cam_iface_backend_extras; memset(ccntxt->inherited.backend_extras,0,sizeof(cam_iface_backend_extras)); FlyCapture2::Camera *cam = new FlyCapture2::Camera; FlyCapture2::PGRGuid guid; CIPGRCHK( BACKEND_GLOBAL(busMgr_ptr)->GetCameraFromIndex(device_number, &guid)); CIPGRCHK(cam->Connect(&guid)); FlyCapture2::FC2Config cfg; CIPGRCHK(cam->GetConfiguration(&cfg)); cfg.numBuffers = NumImageBuffers; CIPGRCHK(cam->SetConfiguration(&cfg)); // Set the settings to the camera CamMode target_mode = result[mode_number]; if (target_mode.videomode == FlyCapture2::VIDEOMODE_FORMAT7) { CIPGRCHK(cam->SetFormat7Configuration(&target_mode.fmt7ImageSettings, target_mode.fmt7PacketInfo.recommendedBytesPerPacket )); } else { CIPGRCHK(cam->SetVideoModeAndFrameRate(target_mode.videomode, target_mode.framerate)); } ccntxt->inherited.cam = (void*)cam; // XXX move this to start camera and query camera for settings CIPGRCHK(cam->StartCapture()); // Retrieve an image to get width, height. XXX change to query later. FlyCapture2::Image rawImage; CIPGRCHK( cam->RetrieveBuffer( &rawImage )); cam_iface_backend_extras *extras = (cam_iface_backend_extras *)ccntxt->inherited.backend_extras; ccntxt->inherited.depth = rawImage.GetBitsPerPixel(); extras->buf_size = rawImage.GetDataSize(); extras->current_height = rawImage.GetRows(); extras->current_width = rawImage.GetCols(); extras->max_height = rawImage.GetRows(); extras->max_width = rawImage.GetCols(); CIPGRCHK( cam->GetTriggerModeInfo( &extras->trigger_mode_info )); switch (rawImage.GetPixelFormat()) { case FlyCapture2::PIXEL_FORMAT_MONO8: ccntxt->inherited.coding = CAM_IFACE_MONO8; if (rawImage.GetBayerTileFormat()!=FlyCapture2::NONE) { NOT_IMPLEMENTED; } break; case FlyCapture2::PIXEL_FORMAT_RAW8: switch (rawImage.GetBayerTileFormat()) { case FlyCapture2::NONE: ccntxt->inherited.coding = CAM_IFACE_RAW8; break; case FlyCapture2::RGGB: ccntxt->inherited.coding = CAM_IFACE_MONO8_BAYER_RGGB; break; case FlyCapture2::GRBG: ccntxt->inherited.coding = CAM_IFACE_MONO8_BAYER_GRBG; break; case FlyCapture2::GBRG: ccntxt->inherited.coding = CAM_IFACE_MONO8_BAYER_GBRG; break; case FlyCapture2::BGGR: ccntxt->inherited.coding = CAM_IFACE_MONO8_BAYER_BGGR; break; default: NOT_IMPLEMENTED; } } CIPGRCHK(cam->StopCapture()); }
int main() { FlyCapture2::Error error; FlyCapture2::PGRGuid guid; FlyCapture2::BusManager busMgr; FlyCapture2::Camera cam; FlyCapture2::VideoMode vm; FlyCapture2::FrameRate fr; FlyCapture2::Image rawImage; //Initializing camera error = busMgr.GetCameraFromIndex(0, &guid); if (error != FlyCapture2::PGRERROR_OK) { error.PrintErrorTrace(); return CAM_FAILURE; } vm = FlyCapture2::VIDEOMODE_640x480Y8; fr = FlyCapture2::FRAMERATE_60; error = cam.Connect(&guid); if (error != FlyCapture2::PGRERROR_OK) { error.PrintErrorTrace(); return CAM_FAILURE; } cam.SetVideoModeAndFrameRate(vm, fr); //Starting the capture error = cam.StartCapture(); if (error != FlyCapture2::PGRERROR_OK) { error.PrintErrorTrace(); return CAM_FAILURE; } while(1) { Mat frame (Size(640,480),CV_8UC1); // Mat img_scene (Size(640,480),CV_8UC3); Mat img_object = imread( "bitslogo.png", CV_LOAD_IMAGE_GRAYSCALE ); cam.RetrieveBuffer(&rawImage); memcpy(frame.data, rawImage.GetData(), rawImage.GetDataSize()); cvtColor(frame,frame,CV_BayerBG2RGB); imwrite("temp.bmp",frame); // cvtColor(img_scene,img_scene,CV_RGB2GRAY); Mat img_scene = imread( "temp.bmp", CV_LOAD_IMAGE_GRAYSCALE ); if( !img_object.data || !img_scene.data ) { std::cout<< " --(!) Error reading images " << std::endl; return -1; } //-- Step 1: Detect the keypoints using SURF Detector int minHessian = 400; SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_object, keypoints_scene; detector.detect( img_object, keypoints_object ); detector.detect( img_scene, keypoints_scene ); //-- Step 2: Calculate descriptors (feature vectors) SurfDescriptorExtractor extractor; Mat descriptors_object, descriptors_scene; extractor.compute( img_object, keypoints_object, descriptors_object ); extractor.compute( img_scene, keypoints_scene, descriptors_scene ); //-- Step 3: Matching descriptor vectors using FLANN matcher FlannBasedMatcher matcher; std::vector< DMatch > matches; matcher.match( descriptors_object, descriptors_scene, matches ); double max_dist = 0; double min_dist = 100; //-- Quick calculation of max and min distances between keypoints for( int i = 0; i < descriptors_object.rows; i++ ) { double dist = matches[i].distance; if( dist < min_dist ) min_dist = dist; if( dist > max_dist ) max_dist = dist; } printf("-- Max dist : %f \n", max_dist ); printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist ) std::vector< DMatch > good_matches; for( int i = 0; i < descriptors_object.rows; i++ ) { if( matches[i].distance < 3*min_dist ) { good_matches.push_back( matches[i]); } } Mat img_matches; drawMatches( img_object, keypoints_object, img_scene, keypoints_scene, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Localize the object std::vector<Point2f> obj; std::vector<Point2f> scene; for( int i = 0; i < good_matches.size(); i++ ) { //-- Get the keypoints from the good matches obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt ); scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt ); } Mat H = findHomography( obj, scene, CV_RANSAC ); //-- Get the corners from the image_1 ( the object to be "detected" ) std::vector<Point2f> obj_corners(4); obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 ); obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows ); std::vector<Point2f> scene_corners(4); perspectiveTransform( obj_corners, scene_corners, H); //-- Draw lines between the corners (the mapped object in the scene - image_2 ) line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 ); line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 ); line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 ); line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 ); //-- Show detected matches imshow( "Good Matches & Object detection", img_matches ); int c = cvWaitKey(100); if(c == 27) break; } return 0; }
int main() { FlyCapture2::Error error; FlyCapture2::PGRGuid guid; FlyCapture2::BusManager busMgr; FlyCapture2::Camera cam; FlyCapture2::VideoMode vm; FlyCapture2::FrameRate fr; FlyCapture2::Image rawImage; //Initializing camera error = busMgr.GetCameraFromIndex(0, &guid); if (error != FlyCapture2::PGRERROR_OK) { error.PrintErrorTrace(); return CAM_FAILURE; } vm = FlyCapture2::VIDEOMODE_640x480Y8; fr = FlyCapture2::FRAMERATE_60; error = cam.Connect(&guid); if (error != FlyCapture2::PGRERROR_OK) { error.PrintErrorTrace(); return CAM_FAILURE; } cam.SetVideoModeAndFrameRate(vm, fr); //Starting the capture error = cam.StartCapture(); if (error != FlyCapture2::PGRERROR_OK) { error.PrintErrorTrace(); return CAM_FAILURE; } //Image Variables Mat frame (Size(640,480),CV_8UC1); Mat img_bgr (Size(640,480),CV_8UC3); Mat img_hsv (Size(640,480),CV_8UC3); //Image in HSV color space Mat threshy (Size(640,480),CV_8UC1); //Threshed Image // Mat labelImg (Size(640,480),CV_8UC1); //Image Variable for blobs IplImage* histogram= cvCreateImage(cvSize(640,480),8,3); //Image histograms Mat histograms (Size(640,480),CV_8UC1); //greyscale image for histogram Mat empty (Size(640,480),CV_8UC3); // CvBlobs blobs; while(1) { cam.RetrieveBuffer(&rawImage); memcpy(frame.data, rawImage.GetData(), rawImage.GetDataSize()); // histogram = empty.clone(); cvZero(histogram); // cvAddS(frame, cvScalar(70,70,70), frame); cvtColor(frame,img_bgr,CV_BayerBG2BGR); // cout<<"\n1"; cvtColor(img_bgr,img_hsv,CV_BGR2HSV); // cout<<"\n2"; //Thresholding the frame for yellow inRange(img_hsv, Scalar(20, 100, 20), Scalar(70, 255, 255), threshy); // cvInRangeS(img_hsv, cvScalar(0, 120, 100), cvScalar(255, 255, 255), threshy); //Filtering the frame - subsampling?? // smooth(threshy,threshy,CV_MEDIAN,7,7); //Finding the blobs // unsigned int result=cvLabel(threshy,labelImg,blobs); //Filtering the blobs // cvFilterByArea(blobs,500,1000); //Rendering the blobs // cvRenderBlobs(labelImg,blobs,img_bgr,img_bgr); CvPoint prev = cvPoint(0,0); for(int x=0;x<640;++x) { Mat col = threshy.col(x); int y = 480 - countNonZero(col); for(int i=0 ; i<480 ; ++i) histograms.at<uchar>(x,i) = y; CvPoint next = cvPoint(x,y); cvLine(histogram,prev,next,cColor); // cvCircle(histogram,next,2,cColor,3); prev=next; } //Showing the images imshow("Live",img_bgr); imshow("Threshed",threshy); cvShowImage("Histogram",histogram); int c= cvWaitKey(10); if(c == 27) break; } //Cleanup // cvReleaseImage(&frame); // cvReleaseImage(&threshy); // cvReleaseImage(&img_hsv); // cvReleaseImage(&labelImg); // cvReleaseImage(&histogram); cvDestroyAllWindows(); return 0; }