TEST_F(GeoLibOctTree, TestWithAlternatingPoints3d) { // this case is not correctly handled by lexicographical sorting double const eps(1e-1); double const small_displacement(1e-2); ps_ptr.push_back(new GeoLib::Point(0,0,0,0)); ps_ptr.push_back(new GeoLib::Point(2*small_displacement,0,0,1)); ps_ptr.push_back(new GeoLib::Point(small_displacement,1,0,2)); ps_ptr.push_back(new GeoLib::Point(4*small_displacement,0,0,3)); ps_ptr.push_back(new GeoLib::Point(3*small_displacement,1,0,4)); ps_ptr.push_back(new GeoLib::Point(6*small_displacement,0,0,5)); ps_ptr.push_back(new GeoLib::Point(5*small_displacement,1,0,6)); GeoLib::AABB const aabb(ps_ptr.cbegin(), ps_ptr.cend()); const MathLib::Point3d& min(aabb.getMinPoint()); const MathLib::Point3d& max(aabb.getMaxPoint()); std::unique_ptr<GeoLib::OctTree<GeoLib::Point, 8>> oct_tree( GeoLib::OctTree<GeoLib::Point, 8>::createOctTree(min, max, eps)); // pt_ptr[0] should be inserted correctly GeoLib::Point * ret_pnt(nullptr); ASSERT_TRUE(oct_tree->addPoint(ps_ptr[0], ret_pnt)); ASSERT_EQ(ps_ptr[0], ret_pnt); // ps_ptr[1] is in the eps-environment of ps_ptr[0] ret_pnt = nullptr; ASSERT_FALSE(oct_tree->addPoint(ps_ptr[1], ret_pnt)); ASSERT_EQ(ps_ptr[0], ret_pnt); // pt_ptr[2] should be inserted correctly ret_pnt = nullptr; ASSERT_TRUE(oct_tree->addPoint(ps_ptr[2], ret_pnt)); ASSERT_EQ(ps_ptr[2], ret_pnt); // ps_ptr[3] is in the eps-environment of ps_ptr[0] ret_pnt = nullptr; ASSERT_FALSE(oct_tree->addPoint(ps_ptr[3], ret_pnt)); ASSERT_EQ(ps_ptr[0], ret_pnt); // ps_ptr[4] is in the eps-environment of ps_ptr[2] ret_pnt = nullptr; ASSERT_FALSE(oct_tree->addPoint(ps_ptr[4], ret_pnt)); ASSERT_EQ(ps_ptr[2], ret_pnt); // ps_ptr[5] is in the eps-environment of ps_ptr[0] ret_pnt = nullptr; ASSERT_FALSE(oct_tree->addPoint(ps_ptr[5], ret_pnt)); ASSERT_EQ(ps_ptr[0], ret_pnt); // ps_ptr[6] is in the eps-environment of ps_ptr[2] ret_pnt = nullptr; ASSERT_FALSE(oct_tree->addPoint(ps_ptr[6], ret_pnt)); ASSERT_EQ(ps_ptr[2], ret_pnt); }
TEST_F(GeoLibOctTree, TestSmallDistanceDifferentLeaves) { // case where two points with a small distance but different OctTree leaves // are inserted double const eps(0.5); for (std::size_t k = 0; k < 21; ++k) { for (std::size_t j = 0; j < 21; ++j) { std::size_t id = k*21+j; for (std::size_t i = 0; i < 21; ++i) { ps_ptr.push_back(new GeoLib::Point(i-10., j-10., k-10., id+i)); } } } // create OctTree GeoLib::AABB const aabb(ps_ptr.cbegin(), ps_ptr.cend()); const MathLib::Point3d& min(aabb.getMinPoint()); const MathLib::Point3d& max(aabb.getMaxPoint()); std::unique_ptr<GeoLib::OctTree<GeoLib::Point, 2>> oct_tree( GeoLib::OctTree<GeoLib::Point, 2>::createOctTree(min, max, eps)); // fill OctTree for (auto p : ps_ptr) { GeoLib::Point * ret_pnt(nullptr); ASSERT_TRUE(oct_tree->addPoint(p, ret_pnt)); ASSERT_EQ(p, ret_pnt); } // point near the GeoLib::Point (0, -10, -10, 10) (with id 10) std::unique_ptr<GeoLib::Point> p0(new GeoLib::Point(0.1, -10.0, -10.0)); GeoLib::Point * ret_pnt(nullptr); ASSERT_FALSE(oct_tree->addPoint(p0.get(), ret_pnt)); ASSERT_EQ(10u, ret_pnt->getID()); (*p0)[0] = -0.1; ret_pnt = nullptr; ASSERT_FALSE(oct_tree->addPoint(p0.get(), ret_pnt)); ASSERT_EQ(10u, ret_pnt->getID()); }
std::size_t ElementSearch::searchByBoundingBox( GeoLib::AABB const& aabb) { auto matchedIDs = filter(_mesh.getElements(), [&aabb](MeshLib::Element* e) { std::size_t const nElemNodes (e->getNumberOfBaseNodes()); for (std::size_t n=0; n < nElemNodes; ++n) if (aabb.containsPoint(*e->getNode(n), 0)) return true; // any node of element is in aabb. return false; // no nodes of element are in aabb. }); this->updateUnion(matchedIDs); return matchedIDs.size(); }
void Mesh2MeshPropertyInterpolation::interpolatePropertiesForMesh(Mesh *dest_mesh, std::vector<double>& dest_properties) const { // carry over property information from source elements to source nodes std::vector<double> interpolated_src_node_properties(_src_mesh->getNumberOfNodes()); interpolateElementPropertiesToNodeProperties(interpolated_src_node_properties); // looping over the destination elements and calculate properties // from interpolated_src_node_properties std::vector<MeshLib::Node*> const& src_nodes(_src_mesh->getNodes()); GeoLib::Grid<MeshLib::Node> src_grid(src_nodes.begin(), src_nodes.end(), 64); auto materialIds = dest_mesh->getProperties().getPropertyVector<int>("MaterialIDs"); if (!materialIds) materialIds = dest_mesh->getProperties().createNewPropertyVector<int>( "MaterialIDs", MeshLib::MeshItemType::Cell, 1); if (!materialIds) { ERR("Could not create PropertyVector for MaterialIDs in Mesh."); return; } std::vector<MeshLib::Element*> const& dest_elements(dest_mesh->getElements()); const std::size_t n_dest_elements(dest_elements.size()); for (std::size_t k(0); k<n_dest_elements; k++) { // compute axis aligned bounding box around the current element const GeoLib::AABB elem_aabb(dest_elements[k]->getNodes(), dest_elements[k]->getNodes()+dest_elements[k]->getNumberOfBaseNodes()); // request "interesting" nodes from grid std::vector<std::vector<MeshLib::Node*> const*> nodes; src_grid.getPntVecsOfGridCellsIntersectingCuboid(elem_aabb.getMinPoint(), elem_aabb.getMaxPoint(), nodes); std::size_t cnt(0); dest_properties[k] = 0.0; for (std::size_t i(0); i<nodes.size(); ++i) { std::vector<MeshLib::Node*> const* i_th_vec(nodes[i]); const std::size_t n_nodes_in_vec(i_th_vec->size()); for (std::size_t j(0); j<n_nodes_in_vec; j++) { MeshLib::Node const*const j_th_node((*i_th_vec)[j]); if (elem_aabb.containsPoint(*j_th_node)) { if (dest_elements[k]->isPntInElement(*j_th_node, 30)) { dest_properties[k] += interpolated_src_node_properties[(*i_th_vec)[j]->getID()]; cnt++; } } } } dest_properties[k] /= cnt; materialIds->push_back(k); if (cnt == 0) { std::string base_name("DebugData/Element-"); base_name += std::to_string(k); std::string aabb_fname(base_name + "-aabb.gli"); std::ofstream out_aabb(aabb_fname.c_str()); out_aabb << "#POINTS" << "\n"; out_aabb << "0 " << elem_aabb.getMinPoint() << "\n"; out_aabb << "1 " << elem_aabb.getMaxPoint() << "\n"; out_aabb << "#STOP" << "\n"; out_aabb.close(); std::string source_fname(base_name + "-SourceNodes.gli"); std::ofstream out_src(source_fname.c_str()); out_src << "#POINTS" << "\n"; std::size_t nodes_cnt(0); for (std::size_t i(0); i<nodes.size(); ++i) { std::vector<MeshLib::Node*> const* i_th_vec(nodes[i]); const std::size_t n_nodes_in_vec(i_th_vec->size()); for (std::size_t j(0); j<n_nodes_in_vec; j++) { MeshLib::Node const*const j_th_node((*i_th_vec)[j]); out_src << nodes_cnt << " " << *(dynamic_cast<GeoLib::Point const*>(j_th_node)) << "\n"; nodes_cnt++; } } out_src << "#STOP" << "\n"; out_src.close(); ERR("no source nodes in dest element %d", k); } } }
void MeshElementRemovalDialog::accept() { if (this->newMeshNameEdit->text().size()==0) { OGSError::box("Please enter name for new mesh."); return; } bool anything_checked (false); const MeshLib::Mesh* msh = _project.getMesh(this->meshNameComboBox->currentText().toStdString()); MeshLib::ElementSearch ex(*msh); if (this->elementTypeCheckBox->isChecked()) { QList<QListWidgetItem*> items = this->elementTypeListWidget->selectedItems(); for (auto& item : items) ex.searchByElementType( MeshLib::String2MeshElemType(item->text().toStdString())); anything_checked = true; } if (this->scalarArrayCheckBox->isChecked()) { std::string const array_name = this->scalarArrayComboBox->currentText().toStdString(); double min_val, max_val; bool outside = this->outsideButton->isChecked(); if (outside) { min_val = this->outsideScalarMinEdit->text().toDouble(); max_val = this->outsideScalarMaxEdit->text().toDouble(); } else { min_val = this->insideScalarMinEdit->text().toDouble(); max_val = this->insideScalarMaxEdit->text().toDouble(); } std::size_t n_marked_elements = ex.searchByPropertyValueRange<double>(array_name, min_val, max_val, outside); if (n_marked_elements == 0) n_marked_elements = ex.searchByPropertyValueRange<int>(array_name, min_val, max_val, outside); if (n_marked_elements > 0) anything_checked = true; } if (this->boundingBoxCheckBox->isChecked()) { std::vector<MeshLib::Node*> const& nodes (_project.getMesh(this->meshNameComboBox->currentText().toStdString())->getNodes()); GeoLib::AABB const aabb(nodes.begin(), nodes.end()); auto minAABB = aabb.getMinPoint(); auto maxAABB = aabb.getMaxPoint(); // only extract bounding box parameters that have been edited (otherwise there will be rounding errors!) minAABB[0] = (aabb_edits[0]) ? this->xMinEdit->text().toDouble() : (minAABB[0]); maxAABB[0] = (aabb_edits[1]) ? this->xMaxEdit->text().toDouble() : (maxAABB[0]); minAABB[1] = (aabb_edits[2]) ? this->yMinEdit->text().toDouble() : (minAABB[1]); maxAABB[1] = (aabb_edits[3]) ? this->yMaxEdit->text().toDouble() : (maxAABB[1]); minAABB[2] = (aabb_edits[4]) ? this->zMinEdit->text().toDouble() : (minAABB[2]); maxAABB[2] = (aabb_edits[5]) ? this->zMaxEdit->text().toDouble() : (maxAABB[2]); std::vector<MathLib::Point3d> extent; extent.push_back(minAABB); extent.push_back(maxAABB); const GeoLib::AABB updated_aabb(extent.begin(), extent.end()); ex.searchByBoundingBox(updated_aabb); anything_checked = true; } if (this->zeroVolumeCheckBox->isChecked()) { ex.searchByContent(); anything_checked = true; } if (anything_checked) { MeshLib::Mesh* new_mesh = MeshLib::removeElements(*msh, ex.getSearchedElementIDs(), this->newMeshNameEdit->text().toStdString()); if (new_mesh) emit meshAdded(new_mesh); else { if (new_mesh == nullptr) OGSError::box("The current selection removes ALL mesh elements.\nPlease change the selection."); if (ex.getSearchedElementIDs().empty()) OGSError::box("The current selection removes NO mesh elements."); delete new_mesh; return; } } else { OGSError::box("No condition set for elements to remove."); return; } this->done(QDialog::Accepted); }
void GeoMapper::advancedMapOnMesh(const MeshLib::Mesh* mesh, const std::string &new_geo_name) { const std::vector<GeoLib::Point*> *points (this->_geo_objects.getPointVec(this->_geo_name)); const std::vector<GeoLib::Polyline*> *org_lines (this->_geo_objects.getPolylineVec(this->_geo_name)); const GeoLib::AABB<GeoLib::Point> aabb(points->begin(), points->end()); const double eps = sqrt(std::numeric_limits<float>::epsilon()) * sqrt( MathLib::sqrDist(aabb.getMinPoint(),aabb.getMaxPoint())) ; // copy geometry (and set z=0 for all points) unsigned nGeoPoints ( points->size() ); std::vector<GeoLib::Point*> *new_points = new std::vector<GeoLib::Point*>(nGeoPoints); for (size_t i=0; i<nGeoPoints; ++i) (*new_points)[i] = new GeoLib::Point((*(*points)[i])[0],(*(*points)[i])[1],0.0); std::vector<GeoLib::Polyline*> *new_lines (copyPolylinesVector(this->_geo_objects.getPolylineVec(this->_geo_name), new_points)); GeoLib::Grid<GeoLib::Point> grid(new_points->begin(), new_points->end()); double max_segment_length (this->getMaxSegmentLength(*new_lines)); max_segment_length *= max_segment_length; // squared so it can be compared to the squared distances calculated later const unsigned nMeshNodes ( mesh->getNNodes() ); std::vector<int> closest_geo_point(nMeshNodes); // index of closest geo point for each mesh node in (x,y)-plane std::vector<double> dist(nMeshNodes); // distance between geo points and mesh nodes in (x,y)-plane for (size_t i=0; i<nMeshNodes; ++i) { const double zero_coords[3] = {(* mesh->getNode(i))[0], (* mesh->getNode(i))[1], 0.0}; GeoLib::Point* pnt = grid.getNearestPoint(zero_coords); dist[i] = MathLib::sqrDist(pnt->getCoords(), zero_coords); closest_geo_point[i] = (dist[i]<=max_segment_length) ? getIndexInPntVec(pnt, new_points) : -1; } // store for each point the line segment to which it was added. const size_t nLines (new_lines->size()); std::vector< std::vector<unsigned> > line_segment_map(nLines); for (std::size_t i=0; i<nLines; ++i) { line_segment_map[i] = std::vector<unsigned>((*new_lines)[i]->getNumberOfPoints(),0); std::iota(line_segment_map[i].begin(), line_segment_map[i].end(), 0); } for (std::size_t i=0; i<nMeshNodes; ++i) { // if mesh node too far away or exactly at point position if (closest_geo_point[i] == -1 || dist[i] < eps) continue; const MeshLib::Node* node (mesh->getNode(i)); for (std::size_t l=0; l<nLines; ++l) { // find relevant polylines if (!(*org_lines)[l]->isPointIDInPolyline(closest_geo_point[i])) continue; // find point position of closest geo point in original polyline GeoLib::Polyline* ply ((*org_lines)[l]); std::size_t nLinePnts ( ply->getNumberOfPoints() ); std::size_t node_index_in_ply (0); for (node_index_in_ply=0; node_index_in_ply<nLinePnts; ++node_index_in_ply) if (ply->getPoint(node_index_in_ply) == (*points)[closest_geo_point[i]]) break; const GeoLib::Point* geo_point (ply->getPoint(node_index_in_ply)); // check if line segments connected to closest geo point intersect connected elements of current node const std::vector<MeshLib::Element*> elements (node->getElements()); const std::size_t nElems = elements.size(); for (std::size_t e=0; e<nElems; ++e) { const unsigned nEdges (elements[e]->getNEdges()); unsigned intersection_count (0); for (unsigned n=0; n<nEdges; ++n) { if (intersection_count>1) break; //already two intersections const MeshLib::Element* line = elements[e]->getEdge(n); unsigned index_offset(0); // default: add to first line segment GeoLib::Point* intersection (NULL); if (node_index_in_ply>0) // test line segment before closest point intersection = calcIntersection(line->getNode(0), line->getNode(1), geo_point, ply->getPoint(node_index_in_ply-1)); if (intersection == NULL && node_index_in_ply<(nLinePnts-1)) // test line segment after closest point { intersection = calcIntersection(line->getNode(0), line->getNode(1), geo_point, ply->getPoint(node_index_in_ply+1)); index_offset = 1; // add to second segment } if (intersection) { intersection_count++; unsigned start_point_idx = static_cast<unsigned>(std::distance(line_segment_map[l].begin(), std::find_if(line_segment_map[l].begin(), line_segment_map[l].end(), [&node_index_in_ply, &index_offset](unsigned a){return a==node_index_in_ply+index_offset-1;}))); unsigned end_point_idx = static_cast<unsigned>(std::distance(line_segment_map[l].begin(), std::find_if(line_segment_map[l].begin(), line_segment_map[l].end(), [&node_index_in_ply, &index_offset](unsigned a){return a==node_index_in_ply+index_offset;}))); std::size_t pos = getPointPosInLine((*new_lines)[l], start_point_idx, end_point_idx, intersection, eps); if (pos) { const std::size_t pnt_pos (new_points->size()); new_points->push_back(intersection); (*new_lines)[l]->insertPoint(pos, pnt_pos); line_segment_map[l].insert(line_segment_map[l].begin()+pos, node_index_in_ply+index_offset-1); } } } } } } this->_geo_objects.addPointVec(new_points, const_cast<std::string&>(new_geo_name)); std::vector<size_t> pnt_id_map = this->_geo_objects.getPointVecObj(new_geo_name)->getIDMap(); for (std::size_t i=0; i<new_lines->size(); ++i) (*new_lines)[i]->updatePointIDs(pnt_id_map); this->_geo_objects.addPolylineVec(new_lines, new_geo_name); // map new geometry incl. additional point using the normal mapping method this->_geo_name = new_geo_name; this->mapOnMesh(mesh); }