Example #1
0
void laserClient::run(){

	IceUtil::Time last;

	last=IceUtil::Time::now();
	while (!(_done)){
		if (pauseStatus){
			IceUtil::Mutex::Lock sync(this->controlMutex);
			this->sem.wait(sync);
		}

		jderobot::LaserDataPtr localLaser=this->prx->getLaserData();

		this->controlMutex.lock();
		this->data.resize(localLaser->distanceData.size());
		std::copy( localLaser->distanceData.begin(), localLaser->distanceData.end(), this->data.begin() );

		this->controlMutex.unlock();

		if ((IceUtil::Time::now().toMicroSeconds() - last.toMicroSeconds()) > this->cycle ){
			if (this->debug)
				std::cout<< prefix << ": pointCloud adquisition timeout-" << std::endl;
		}
		else{
			usleep(this->cycle - (IceUtil::Time::now().toMicroSeconds() - last.toMicroSeconds()));
		}
		this->refreshRate=(int)(1000000/(IceUtil::Time::now().toMicroSeconds() - last.toMicroSeconds()));
		last=IceUtil::Time::now();
	}
}
Example #2
0
void pointcloudClient::run(){

	IceUtil::Time last;

	last=IceUtil::Time::now();

	while (!(_done)){
		if (pauseStatus){
			IceUtil::Mutex::Lock sync(this->controlMutex);
			this->sem.wait(sync);
		}

		try{
			jderobot::pointCloudDataPtr localCloud=this->prx->getCloudData();
			this->controlMutex.lock();
	        this->newData=true;
			this->data.resize(localCloud->p.size());
			std::copy( localCloud->p.begin(), localCloud->p.end(), this->data.begin() );
			this->controlMutex.unlock();
			this->semBlock.broadcast();
		}
		catch(...){
			jderobot::Logger::getInstance()->warning(prefix +"error during request (connection error)");
			usleep(50000);

		}




		int process = this->cycle - (IceUtil::Time::now().toMicroSeconds() - last.toMicroSeconds());

		if (process > (int)cycle ){
			jderobot::Logger::getInstance()->warning(prefix + ": pointCloud adquisition timeout-");
		}
		else{
			int delay = (int)cycle - process;
			if (delay <1 || delay > (int)cycle)
				delay = 1;

			usleep(delay);
		}


		this->refreshRate=(int)(1000000/(IceUtil::Time::now().toMicroSeconds() - last.toMicroSeconds()));
		last=IceUtil::Time::now();
		usleep(100);
	}
	this->data.clear();

}
Example #3
0
std::string 
ReplayConductor::toString( const IceUtil::Time &t )
{
    stringstream ss;
    ss << t.toSeconds() << ":" << t.toMicroSeconds()-t.toSeconds()*1e6;
    return ss.str();
}
Example #4
0
void Pose3dIceClient::run(){
	JdeRobotTypes::Pose3d pose3d;

	IceUtil::Time last;

	last=IceUtil::Time::now();
	while (this->on){
		if (pauseStatus){
			IceUtil::Mutex::Lock sync(this->controlMutex);
			this->sem.wait(sync);
		}

		try{
			jderobot::Pose3DDataPtr pose3ddata = this->prx->getPose3DData();

			pose3d.x = pose3ddata->x;
			pose3d.y = pose3ddata->y;
			pose3d.z = pose3ddata->z;
			pose3d.q[0] = pose3ddata->q0;
			pose3d.q[1] = pose3ddata->q1;
			pose3d.q[2] = pose3ddata->q2;
			pose3d.q[3] = pose3ddata->q3;
			pose3d.yaw = this->quat2Yaw(pose3d.q);
			pose3d.pitch = this->quat2Pitch(pose3d.q);
			pose3d.roll = this->quat2Roll(pose3d.q);



			this->controlMutex.lock();
			this->pose = pose3d;
			this->controlMutex.unlock();
		}
		catch(...){
			std::cerr << prefix +"error during request (connection error)" << std::endl;
			usleep(5000);

		}


		if ((IceUtil::Time::now().toMicroSeconds() - last.toMicroSeconds()) <= this->cycle ){
			usleep(this->cycle - (IceUtil::Time::now().toMicroSeconds() - last.toMicroSeconds()));
		}
		last=IceUtil::Time::now();
	}
}
Example #5
0
void
Driver::read( hydrointerfaces::LaserScanner2d::Data &data )
{
    // tmp data storage
    hokuyo_aist::HokuyoData hokuyoData;

    try {
        laser_->GetRanges( &hokuyoData );
        // set the time stamp right away
        IceUtil::Time t = IceUtil::Time::now();
        data.timeStampSec = (int)t.toSeconds();
        data.timeStampUsec = (int)t.toMicroSeconds() - data.timeStampSec*1000000;

        //TODO: Michael 23/Sept/08
        //this timeStamp is actually at the _end_ of the scan; also
        //scan-time is _not_ negligable for the hokuyos (10-30Hz --> 100-33ms)
        //
        //--> need to keep track of delta time between scans, and use fieldOfView
        //to calculate a backcorrection, assuming 1 rotation per scan (true for
        //URG and UHG, unknown for TopURG). Also should put something like
        //durationOfScan into the interface.
        //
        //This would allow to interpolate senor pose per individual range-reading.
        //Yes, I really think this is neccessary.
    }
    catch (hokuyo_aist::HokuyoError &e)
    {
        std::stringstream ss;
        ss << "Read on urg_nz failed. Errorcode: "
            << e.Code()
            << ", Errordescription: "
            << e.what()
            << " continuing";
        //context_.tracer().error( ss.str() ,2 );
        throw gbxutilacfr::HardwareException( ERROR_INFO, ss.str() );
    }

    const uint32_t* ranges = hokuyoData.Ranges();
    //const uint32_t* intensities = hokuyoData.Intensities();
    size_t length = hokuyoData.Length();
    assert(config_.numberOfSamples == (int)length); // make sure the receiving end has enough space
    double minRangeHokuyo = config_.minRange*1000.0; // convert to mm
    for (unsigned int i=0; i<length; ++i )
    {
        if(ranges[i] < minRangeHokuyo){
            //these guys are error-codes (per reading); setting to maxRange to get behavior similar to SICK
            data.ranges[i]  = config_.maxRange;
        }else{
            data.ranges[i]  = ranges[i] / 1000.0;
        }
    }
}
Example #6
0
jderobot::ImageDataPtr CameraUtils::convert(const cv::Mat &image) {

    jderobot::ImageDataPtr reply=jderobot::ImageDataPtr(new jderobot::ImageData());
    reply->description = jderobot::ImageDescriptionPtr(new jderobot::ImageDescription());
    IceUtil::Time t = IceUtil::Time::now();
    reply->timeStamp.seconds = (long)t.toSeconds();
    reply->timeStamp.useconds = (long)t.toMicroSeconds() - reply->timeStamp.seconds*1000000;
    reply->description->format = colorspaces::ImageRGB8::FORMAT_RGB8.get()->name;
    reply->description->width=image.size().width;
    reply->description->height=image.size().height;
    reply->pixelData.resize(image.rows*image.cols * image.channels());
    memcpy(&(reply->pixelData[0]),(unsigned char *) image.data, image.rows*image.cols * image.channels());
    return reply;
}
Example #7
0
void laserClient::run(){

	IceUtil::Time last;

	last=IceUtil::Time::now();
	while (!(_done)){
		if (pauseStatus){
			IceUtil::Mutex::Lock sync(this->controlMutex);
			this->sem.wait(sync);
		}

		try{
			jderobot::LaserDataPtr localLaser=this->prx->getLaserData();

			this->controlMutex.lock();
			this->data.resize(localLaser->distanceData.size());
			std::copy( localLaser->distanceData.begin(), localLaser->distanceData.end(), this->data.begin() );

			this->controlMutex.unlock();
		}
		catch(...){
			jderobot::Logger::getInstance()->warning(prefix +"error during request (connection error)");
			usleep(5000);

		}


		if ((IceUtil::Time::now().toMicroSeconds() - last.toMicroSeconds()) > this->cycle ){
			jderobot::Logger::getInstance()->warning(prefix + ": pointCloud adquisition timeout-");
		}
		else{
			usleep(this->cycle - (IceUtil::Time::now().toMicroSeconds() - last.toMicroSeconds()));
		}
		this->refreshRate=(int)(1000000/(IceUtil::Time::now().toMicroSeconds() - last.toMicroSeconds()));
		last=IceUtil::Time::now();
	}
}
Example #8
0
void
Driver::read( hydrointerfaces::Image::Data &data )
{
    context_.tracer().debug( "Copying image file data..." );

    //Qt uses a uint32_t array not a byte aligned array so we must cut off the end of each scanline.
    uint32_t bytesPerLine = static_cast<uint32_t>(image_.width()) * 3;
    for(uint32_t i = 0; i < static_cast<uint32_t>(image_.height()); i++)
    {
        memcpy(data.pixelData+i*bytesPerLine, image_.scanLine(i), bytesPerLine);
    }

    IceUtil::Time t = IceUtil::Time::now();
    data.timeStampSec = (int)t.toSeconds();
    data.timeStampUsec = (int)t.toMicroSeconds() - data.timeStampSec*1000000;
}
Example #9
0
void
ReplayConductor::handleRewind( const IceUtil::Time &deltaT )
{
    bool wasPlaying = isPlaying_;
    if ( wasPlaying )
        handlePause();

    int sec, usec;
    masterFileReader_.getCursorTime( sec, usec );

    IceUtil::Time tNew = orcalog::iceUtilTime( sec, usec );
    tNew -= deltaT;
    masterFileReader_.placeCursorAtOrAfterTime( tNew.toSeconds(),
                                                (int)(tNew.toMicroSeconds()-tNew.toSeconds()*1e6) );

    if ( wasPlaying )
        handleStart();
}
Example #10
0
 void ReplyTask::run() {
   jderobot::ImageDataPtr reply(new jderobot::ImageData);
   ::jderobot::Time t;
   while (1) {
     IceUtil::Time t = IceUtil::Time::now();
     reply->timeStamp.seconds = (long) t.toSeconds();
     reply->timeStamp.useconds = (long) t.toMicroSeconds()
         - reply->timeStamp.seconds * 1000000;
     {  //critical region start
       IceUtil::Mutex::Lock sync(requestsMutex);
       while (!requests.empty()) {
         jderobot::AMD_ImageProvider_getImageDataPtr cb = requests.front();
         requests.pop_front();
         cb->ice_response(reply);
       }
     }
   }
 }
chrono::system_clock::time_point
#else
IceUtil::Time
#endif
getX509Date(SecCertificateRef cert, CFTypeRef key)
{
    assert(key == kSecOIDX509V1ValidityNotAfter || key == kSecOIDX509V1ValidityNotBefore);
    UniqueRef<CFDictionaryRef> property(getCertificateProperty(cert, key));
    CFAbsoluteTime seconds = 0;
    if(property)
    {
        CFNumberRef date = static_cast<CFNumberRef>(CFDictionaryGetValue(property.get(), kSecPropertyKeyValue));
        CFNumberGetValue(date, kCFNumberDoubleType, &seconds);
    }

    IceUtil::Time time = IceUtil::Time::secondsDouble(kCFAbsoluteTimeIntervalSince1970 + seconds);

#ifdef ICE_CPP11_MAPPING
    return chrono::system_clock::time_point(chrono::microseconds(time.toMicroSeconds()));
#else
    return time;
#endif
}
Example #12
0
void
Driver::read( hydrointerfaces::MultiImage::Data& data )
{

    context_.tracer().debug( "Grabbing frame(s) from camera(s)..." );
   
    for( unsigned int i=0; i<cameras_.size(); ++i )
    {
        // This performs the grab and the retrieve with one cv function call
        frames_.at(i) = cvQueryFrame( cameras_.at(i) );
        if( frames_.at(i) == NULL )
        {
            stringstream ss;
            ss << "Failed to retrieve frame from Camera " << i;
            throw gbxutilacfr::Exception( ERROR_INFO, ss.str() );
        }
    
        memcpy( data.at(i).pixelData, frames_.at(i)->imageData, frames_.at(i)->imageSize );
        
        IceUtil::Time t = IceUtil::Time::now();
        data.at(i).timeStampSec = (int)t.toSeconds();
        data.at(i).timeStampUsec = (int)t.toMicroSeconds() - data.at(i).timeStampSec*1000000;
    }
}
Example #13
0
void
cameraClient::run(){
	jderobot::ImageDataPtr dataPtr;
	IceUtil::Time last;

	int iterIndex = 0;
	int totalRefreshRate = 0;

	last=IceUtil::Time::now();
	while (!(_done)){

		iterIndex ++;
		if (pauseStatus){
			IceUtil::Mutex::Lock sync(this->controlMutex);
			this->semWait.wait(sync);
		}

		try{

			dataPtr = this->prx->getImageData(this->mImageFormat);
			cv::Mat image = CameraUtils::getImageFromCameraProxy(dataPtr);
			this->controlMutex.lock();
			image.copyTo(this->data);
			this->newData=true;
			this->semBlock.broadcast();
			this->controlMutex.unlock();


		}
		catch(...){
			LOG(WARNING) << prefix +"error during request (connection error)";
			usleep(50000);

		}

		int process = (IceUtil::Time::now().toMicroSeconds() - last.toMicroSeconds());



		if (process > (int)cycle ){
			DLOG(WARNING) << "--------" + prefix + " adquisition timeout-";
		}
		else{
			int delay = (int)cycle - process;
			if (delay <1 || delay > (int)cycle)
				delay = 1;

			usleep(delay);
		}


		int rate =(int)(1000000/(IceUtil::Time::now().toMicroSeconds() - last.toMicroSeconds()));
		totalRefreshRate =  totalRefreshRate + rate;
		this->refreshRate= totalRefreshRate / iterIndex;
		last=IceUtil::Time::now();

		if (iterIndex == INT_MAX) 
		{
			iterIndex = 0;
			DLOG(INFO) << "*** Counter reset";
		}

	}
	this->data.release();
}
Example #14
0
int
ThroughputClient::run(int argc, char* argv[])
{
    if(argc > 1)
    {
        cerr << appName() << ": too many arguments" << endl;
        return EXIT_FAILURE;
    }

    ThroughputPrx throughput = ThroughputPrx::checkedCast(communicator()->propertyToProxy("Throughput.Proxy"));
    if(!throughput)
    {
        cerr << argv[0] << ": invalid proxy" << endl;
        return EXIT_FAILURE;
    }

    ThroughputPrx throughputOneway = ThroughputPrx::uncheckedCast(throughput->ice_oneway());

    ByteSeq byteSeq(ByteSeqSize);
    pair<const Ice::Byte*, const Ice::Byte*> byteArr;
    byteArr.first = &byteSeq[0];
    byteArr.second = byteArr.first + byteSeq.size();

    StringSeq stringSeq(StringSeqSize, "hello");

    StringDoubleSeq structSeq(StringDoubleSeqSize);
    int i;
    for(i = 0; i < StringDoubleSeqSize; ++i)
    {
        structSeq[i].s = "hello";
        structSeq[i].d = 3.14;
    }

    FixedSeq fixedSeq(FixedSeqSize);
    for(i = 0; i < FixedSeqSize; ++i)
    {
        fixedSeq[i].i = 0;
        fixedSeq[i].j = 0;
        fixedSeq[i].d = 0;
    }


    //
    // To allow cross-language tests we may need to "warm up" the
    // server. The warm up is to ensure that any JIT compiler will
    // have converted any hotspots to native code. This ensures an
    // accurate throughput measurement.
    //
    if(throughput->needsWarmup())
    {
        throughput->startWarmup();

        ByteSeq emptyBytesBuf(1);
        emptyBytesBuf.resize(1);
        pair<const Ice::Byte*, const Ice::Byte*> emptyBytes;
        emptyBytes.first = &emptyBytesBuf[0];
        emptyBytes.second = emptyBytes.first + emptyBytesBuf.size();

        StringSeq emptyStrings(1);
        emptyStrings.resize(1);

        StringDoubleSeq emptyStructs(1);
        emptyStructs.resize(1);

        FixedSeq emptyFixed(1);
        emptyFixed.resize(1);

        cout << "warming up the server... " << flush;
        for(int i = 0; i < 10000; i++)
        {
            throughput->sendByteSeq(emptyBytes);
            throughput->sendStringSeq(emptyStrings);
            throughput->sendStructSeq(emptyStructs);
            throughput->sendFixedSeq(emptyFixed);

            throughput->recvByteSeq();
            throughput->recvStringSeq();
            throughput->recvStructSeq();
            throughput->recvFixedSeq();

            throughput->echoByteSeq(emptyBytes);
            throughput->echoStringSeq(emptyStrings);
            throughput->echoStructSeq(emptyStructs);
            throughput->echoFixedSeq(emptyFixed);
        }

        throughput->endWarmup();

        cout << " ok" << endl;
    }
    else
    {
        throughput->ice_ping(); // Initial ping to setup the connection.
    }

    menu();

    //
    // By default use byte sequence.
    //
    char currentType = '1';
    int seqSize = ByteSeqSize;

    char c;
    do
    {
        try
        {
            cout << "==> ";
            cin >> c;

            IceUtil::Time tm = IceUtil::Time::now(IceUtil::Time::Monotonic);
            const int repetitions = 1000;

            if(c == '1' || c == '2' || c == '3' || c == '4')
            {
                currentType = c;
                switch(c)
                {
                    case '1':
                    {
                        cout << "using byte sequences" << endl;
                        seqSize = ByteSeqSize;
                        break;
                    }

                    case '2':
                    {
                        cout << "using string sequences" << endl;
                        seqSize = StringSeqSize;
                        break;
                    }

                    case '3':
                    {
                        cout << "using variable-length struct sequences" << endl;
                        seqSize = StringDoubleSeqSize;
                        break;
                    }

                    case '4':
                    {
                        cout << "using fixed-length struct sequences" << endl;
                        seqSize = FixedSeqSize;
                        break;
                    }
                }
            }
            else if(c == 't' || c == 'o' || c == 'r' || c == 'e')
            {
                switch(c)
                {
                    case 't':
                    case 'o':
                    {
                        cout << "sending";
                        break;
                    }

                    case 'r':
                    {
                        cout << "receiving";
                        break;
                    }

                    case 'e':
                    {
                        cout << "sending and receiving";
                        break;
                    }
                }

                cout << ' ' << repetitions;
                switch(currentType)
                {
                    case '1':
                    {
                        cout << " byte";
                        break;
                    }

                    case '2':
                    {
                        cout << " string";
                        break;
                    }

                    case '3':
                    {
                        cout << " variable-length struct";
                        break;
                    }

                    case '4':
                    {
                        cout << " fixed-length struct";
                        break;
                    }
                }
                cout << " sequences of size " << seqSize;

                if(c == 'o')
                {
                    cout << " as oneway";
                }
                
                cout << "..." << endl;
                
                for(int i = 0; i < repetitions; ++i)
                {
                    switch(currentType)
                    {
                        case '1':
                        {
                            switch(c)
                            {
                                case 't':
                                {
                                    throughput->sendByteSeq(byteArr);
                                    break;
                                }
                        
                                case 'o':
                                {
                                    throughputOneway->sendByteSeq(byteArr);
                                    break;
                                }
                        
                                case 'r':
                                {
                                    throughput->recvByteSeq();
                                    break;
                                }
                        
                                case 'e':
                                {
                                    throughput->echoByteSeq(byteArr);
                                    break;
                                }
                            }
                            break;
                        }

                        case '2':
                        {
                            switch(c)
                            {
                                case 't':
                                {
                                    throughput->sendStringSeq(stringSeq);
                                    break;
                                }
                        
                                case 'o':
                                {
                                    throughputOneway->sendStringSeq(stringSeq);
                                    break;
                                }
                        
                                case 'r':
                                {
                                    throughput->recvStringSeq();
                                    break;
                                }
                        
                                case 'e':
                                {
                                    throughput->echoStringSeq(stringSeq);
                                    break;
                                }
                            }
                            break;
                        }

                        case '3':
                        {
                            switch(c)
                            {
                                case 't':
                                {
                                    throughput->sendStructSeq(structSeq);
                                    break;
                                }
                        
                                case 'o':
                                {
                                    throughputOneway->sendStructSeq(structSeq);
                                    break;
                                }
                        
                                case 'r':
                                {
                                    throughput->recvStructSeq();
                                    break;
                                }
                        
                                case 'e':
                                {
                                    throughput->echoStructSeq(structSeq);
                                    break;
                                }
                            }
                            break;
                        }

                        case '4':
                        {
                            switch(c)
                            {
                                case 't':
                                {
                                    throughput->sendFixedSeq(fixedSeq);
                                    break;
                                }
                        
                                case 'o':
                                {
                                    throughputOneway->sendFixedSeq(fixedSeq);
                                    break;
                                }
                        
                                case 'r':
                                {
                                    throughput->recvFixedSeq();
                                    break;
                                }
                        
                                case 'e':
                                {
                                    throughput->echoFixedSeq(fixedSeq);
                                    break;
                                }
                            }
                            break;
                        }
                    }
                }

                tm = IceUtil::Time::now(IceUtil::Time::Monotonic) - tm;
                cout << "time for " << repetitions << " sequences: " << tm * 1000 << "ms" << endl;
                cout << "time per sequence: " << tm * 1000 / repetitions << "ms" << endl;
                int wireSize = 0;
                switch(currentType)
                {
                    case '1':
                    {
                        wireSize = 1;
                        break;
                    }
                    case '2':
                    {
                        wireSize = static_cast<int>(stringSeq[0].size());
                        break;
                    }
                    case '3':
                    {
                        wireSize = static_cast<int>(structSeq[0].s.size());
                        wireSize += 8; // Size of double on the wire.
                        break;
                    }
                    case '4':
                    {
                        wireSize = 16; // Size of two ints and a double on the wire.
                        break;
                    }
                }
                double mbit = repetitions * seqSize * wireSize * 8.0 / tm.toMicroSeconds();
                if(c == 'e')
                {
                    mbit *= 2;
                }
                cout << "throughput: " << setprecision(5) << mbit << "Mbps" << endl;
            }
            else if(c == 's')
            {
                throughput->shutdown();
            }
            else if(c == 'x')
            {
                // Nothing to do
            }
            else if(c == '?')
            {
                menu();
            }
            else
            {
                cout << "unknown command `" << c << "'" << endl;
                menu();
            }
        }
        catch(const Ice::Exception& ex)
        {
            cerr << ex << endl;
        }
    }
    while(cin.good() && c != 'x');

    return EXIT_SUCCESS;
}
Example #15
0
void
CameraIceClient::run(){
	jderobot::ImageDataPtr dataPtr;
	colorspaces::Image::FormatPtr fmt;
	IceUtil::Time last;

	int iterIndex = 0;
	int totalRefreshRate = 0;
	int refrRate = 0;

	JdeRobotTypes::Image img;

	last=IceUtil::Time::now();
	while (this->on){

		iterIndex ++;
		if (pauseStatus){
			IceUtil::Mutex::Lock sync(this->controlMutex);
			this->semWait.wait(sync);
		}

		try{

			
			dataPtr = this->prx->getImageData(this->mImageFormat);

			

			

			// Putting image data
			img.data = CameraUtils::getImageFromCameraProxy(dataPtr);
			
			img.format = dataPtr->description->format;
			img.width = dataPtr->description->width;
			img.height = dataPtr->description->height;
			img.timeStamp = dataPtr->timeStamp.seconds + dataPtr->timeStamp.useconds * 1e-6;




		}
		catch(std::exception& e){
			LOG(WARNING) << prefix +"error during request (connection error): " << e.what() << std::endl;
			usleep(50000);

		}

		int process = (IceUtil::Time::now().toMicroSeconds() - last.toMicroSeconds());



		if (process > (int)cycle ){
			DLOG(WARNING) << "--------" + prefix + " adquisition timeout-";
		}
		else{
			int delay = (int)cycle - process;
			if (delay <1 || delay > (int)cycle)
				delay = 1;

			usleep(delay);
		}


		int rate =(int)(1000000/(IceUtil::Time::now().toMicroSeconds() - last.toMicroSeconds()));
		totalRefreshRate =  totalRefreshRate + rate;
		refrRate = totalRefreshRate / iterIndex;
		last=IceUtil::Time::now();

		if (iterIndex == INT_MAX) 
		{
			iterIndex = 0;
			DLOG(INFO) << "*** Counter reset";
		}

		this->controlMutex.lock();
		this->image = img;
		this->refreshRate = refrRate;
		this->controlMutex.unlock();

	}

	this->image.data.release();
}