Example #1
0
static inline void 
copy_pixels_ (const ImageBuf &buf, int xbegin, int xend,
              int ybegin, int yend, D *r)
{
    int w = (xend-xbegin);
    for (ImageBuf::ConstIterator<S,D> p (buf, xbegin, xend, ybegin, yend);
         p.valid(); ++p) { 
        imagesize_t offset = ((p.y()-ybegin)*w + (p.x()-xbegin)) * buf.nchannels();
        for (int c = 0;  c < buf.nchannels();  ++c)
            r[offset+c] = p[c];
    }
}
Example #2
0
static inline void
getpixel_ (const ImageBuf &buf, int x, int y, int z, float *result, int chans)
{
    ImageBuf::ConstIterator<T> pixel (buf, x, y, z);
    if (pixel.valid()) {
        for (int i = 0;  i < chans;  ++i)
            result[i] = pixel[i];
    } else {
        for (int i = 0;  i < chans;  ++i)
            result[i] = 0.0f;
    }
}
Example #3
0
// DEPRECATED version
bool
ImageBufAlgo::add (ImageBuf &dst, const ImageBuf &A, const ImageBuf &B,
                   int options)
{
    // Sanity checks
    
    // dst must be distinct from A and B
    if ((const void *)&A == (const void *)&dst ||
        (const void *)&B == (const void *)&dst) {
        dst.error ("destination image must be distinct from source");
        return false;
    }
    
    // all three images must have the same number of channels
    if (A.spec().nchannels != B.spec().nchannels) {
        dst.error ("channel number mismatch: %d vs. %d", 
                   A.spec().nchannels, B.spec().nchannels);
        return false;
    }
    
    // If dst has not already been allocated, set it to the right size,
    // make it unconditinally float
    if (! dst.pixels_valid()) {
        ImageSpec dstspec = A.spec();
        dstspec.set_format (TypeDesc::TypeFloat);
        dst.alloc (dstspec);
    }
    // Clear dst pixels if instructed to do so
    if (options & ADD_CLEAR_DST) {
        zero (dst);
    }
      
    ASSERT (A.spec().format == TypeDesc::FLOAT &&
            B.spec().format == TypeDesc::FLOAT &&
            dst.spec().format == TypeDesc::FLOAT);
    
    ImageBuf::ConstIterator<float,float> a (A);
    ImageBuf::ConstIterator<float,float> b (B);
    ImageBuf::Iterator<float> d (dst);
    int nchannels = A.nchannels();
    // Loop over all pixels in A
    for ( ; a.valid();  ++a) {  
        // Point the iterators for B and dst to the corresponding pixel
        if (options & ADD_RETAIN_WINDOWS) {
            b.pos (a.x(), a.y());
        } else {
            // ADD_ALIGN_WINDOWS: make B line up with A
            b.pos (a.x()-A.xbegin()+B.xbegin(), a.y()-A.ybegin()+B.ybegin());
        }
        d.pos (a.x(), b.y());
        
        if (! b.valid() || ! d.valid())
            continue;   // Skip pixels that don't align
        
        // Add the pixel
        for (int c = 0;  c < nchannels;  ++c)
              d[c] = a[c] + b[c];
    }
    
    return true;
}
Example #4
0
void 
IvImage::pixel_transform(bool srgb_to_linear, int color_mode, int select_channel)
{
    /// This table obeys the following function:
    ///
    ///   unsigned char srgb2linear(unsigned char x)
    ///   {
    ///       float x_f = x/255.0;
    ///       float x_l = 0.0;
    ///       if (x_f <= 0.04045)
    ///           x_l = x_f/12.92;
    ///       else
    ///           x_l = powf((x_f+0.055)/1.055,2.4);
    ///       return (unsigned char)(x_l * 255 + 0.5)
    ///   }
    /// 
    ///  It's used to transform from sRGB color space to linear color space.
    static const unsigned char srgb_to_linear_lut[256] = {
        0, 0, 0, 0, 0, 0, 0, 1,
        1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 2, 2, 2, 2, 2, 2,
        2, 2, 3, 3, 3, 3, 3, 3,
        4, 4, 4, 4, 4, 5, 5, 5,
        5, 6, 6, 6, 6, 7, 7, 7,
        8, 8, 8, 8, 9, 9, 9, 10,
        10, 10, 11, 11, 12, 12, 12, 13,
        13, 13, 14, 14, 15, 15, 16, 16,
        17, 17, 17, 18, 18, 19, 19, 20,
        20, 21, 22, 22, 23, 23, 24, 24,
        25, 25, 26, 27, 27, 28, 29, 29,
        30, 30, 31, 32, 32, 33, 34, 35,
        35, 36, 37, 37, 38, 39, 40, 41,
        41, 42, 43, 44, 45, 45, 46, 47,
        48, 49, 50, 51, 51, 52, 53, 54,
        55, 56, 57, 58, 59, 60, 61, 62,
        63, 64, 65, 66, 67, 68, 69, 70,
        71, 72, 73, 74, 76, 77, 78, 79,
        80, 81, 82, 84, 85, 86, 87, 88,
        90, 91, 92, 93, 95, 96, 97, 99,
        100, 101, 103, 104, 105, 107, 108, 109,
        111, 112, 114, 115, 116, 118, 119, 121,
        122, 124, 125, 127, 128, 130, 131, 133,
        134, 136, 138, 139, 141, 142, 144, 146,
        147, 149, 151, 152, 154, 156, 157, 159,
        161, 163, 164, 166, 168, 170, 171, 173,
        175, 177, 179, 181, 183, 184, 186, 188,
        190, 192, 194, 196, 198, 200, 202, 204,
        206, 208, 210, 212, 214, 216, 218, 220,
        222, 224, 226, 229, 231, 233, 235, 237,
        239, 242, 244, 246, 248, 250, 253, 255
    };
    unsigned char correction_table[256];
    int total_channels = spec().nchannels;
    int color_channels = spec().nchannels;
    int max_channels = m_corrected_image.nchannels();

    // FIXME: Now with the iterator and data proxy in place, it should be
    // trivial to apply the transformations to any kind of data, not just
    // UINT8.
    if (spec().format != TypeDesc::UINT8 || ! m_corrected_image.localpixels()) {
        return;
    }

    if (color_channels > 3) {
        color_channels = 3;
    } else if (color_channels == 2) {
        color_channels = 1;
    }

    // This image is Luminance or Luminance + Alpha, and we are asked to show
    // luminance.
    if (color_channels == 1 && color_mode == 3) {
        color_mode = 0; // Just copy as usual.
    }

    // Happy path:
    if (! srgb_to_linear && color_mode <= 1 && m_gamma == 1.0 && m_exposure == 0.0) {
        ImageBuf::ConstIterator<unsigned char, unsigned char> src (*this);
        ImageBuf::Iterator<unsigned char, unsigned char> dst (m_corrected_image);
        for ( ; src.valid (); ++src) {
            dst.pos (src.x(), src.y());
            for (int i = 0; i < max_channels; i++)
                dst[i] = src[i];
        }
        return;
    }

    // fill the correction_table
    if (gamma() == 1.0 && exposure() == 0.0) {
        for (int pixelvalue = 0; pixelvalue < 256; ++pixelvalue) {
            correction_table[pixelvalue] = pixelvalue;
        }
    } else {
        float inv_gamma = 1.0/gamma();
        float gain = powf (2.0f, exposure());
        for (int pixelvalue = 0; pixelvalue < 256; ++pixelvalue) {
            float pv_f = converter (pixelvalue);
            pv_f = clamp (calc_exposure (pv_f, gain, inv_gamma),
                          0.0f, 1.0f);
            correction_table[pixelvalue] = (unsigned char) (pv_f*255 + 0.5);
        }
    }

    ImageBuf::ConstIterator<unsigned char, unsigned char> src (*this);
    ImageBuf::Iterator<unsigned char, unsigned char> dst (m_corrected_image);
    for ( ; src.valid(); ++src) {
        dst.pos (src.x(), src.y());
        if (color_mode == 0 || color_mode == 1) {
            // RGBA, RGB modes.
            int ch = 0;
            for (ch = 0; ch < color_channels; ch++) {
                if (srgb_to_linear)
                    dst[ch] = correction_table[srgb_to_linear_lut[src[ch]]];
                else
                    dst[ch] = correction_table[src[ch]];
            }
            for (; ch < max_channels; ch++) {
                dst[ch] = src[ch];
            }
        } else if (color_mode == 3) {
            // Convert RGB to luminance, (Rec. 709 luma coefficients).
            float luminance;
            if (srgb_to_linear) {
                luminance = converter (srgb_to_linear_lut[src[0]])*0.2126f +
                            converter (srgb_to_linear_lut[src[1]])*0.7152f +
                            converter (srgb_to_linear_lut[src[2]])*0.0722f;
            } else {
                luminance = converter (src[0])*0.2126f +
                            converter (src[1])*0.7152f +
                            converter (src[2])*0.0722f;
            }
            unsigned char val = (unsigned char) (clamp (luminance, 0.0f, 1.0f) * 255.0 + 0.5);
            val = correction_table[val];
            dst[0] = val;
            dst[1] = val;
            dst[2] = val;

            // Handle the rest of the channels
            for (int ch = 3; ch < total_channels; ++ch) {
                dst[ch] = src[ch];
            }
        } else { // Single channel, heatmap.
            unsigned char v = 0;
            if (select_channel < color_channels) {
                if (srgb_to_linear)
                    v = correction_table[srgb_to_linear_lut[src[select_channel]]];
                else
                    v = correction_table[src[select_channel]];
            } else if (select_channel < total_channels) {
                v = src[select_channel];
            }
            int ch = 0;
            for (; ch < color_channels; ++ch) {
                dst[ch] = v;
            }
            for (; ch < max_channels; ++ch) {
                dst[ch] = src[ch];
            }
        } 
    }
}