Example #1
0
/// ApplyQAOverride - Apply a list of edits to the input argument lists.
///
/// The input string is a space separate list of edits to perform,
/// they are applied in order to the input argument lists. Edits
/// should be one of the following forms:
///
///  '#': Silence information about the changes to the command line arguments.
///
///  '^': Add FOO as a new argument at the beginning of the command line.
///
///  '+': Add FOO as a new argument at the end of the command line.
///
///  's/XXX/YYY/': Substitute the regular expression XXX with YYY in the command
///  line.
///
///  'xOPTION': Removes all instances of the literal argument OPTION.
///
///  'XOPTION': Removes all instances of the literal argument OPTION,
///  and the following argument.
///
///  'Ox': Removes all flags matching 'O' or 'O[sz0-9]' and adds 'Ox'
///  at the end of the command line.
///
/// \param OS - The stream to write edit information to.
/// \param Args - The vector of command line arguments.
/// \param Edit - The override command to perform.
/// \param SavedStrings - Set to use for storing string representations.
static void ApplyOneQAOverride(llvm::raw_ostream &OS,
                               llvm::SmallVectorImpl<const char*> &Args,
                               llvm::StringRef Edit,
                               std::set<std::string> &SavedStrings) {
  // This does not need to be efficient.

  if (Edit[0] == '^') {
    const char *Str =
      SaveStringInSet(SavedStrings, Edit.substr(1));
    OS << "### Adding argument " << Str << " at beginning\n";
    Args.insert(Args.begin() + 1, Str);
  } else if (Edit[0] == '+') {
    const char *Str =
      SaveStringInSet(SavedStrings, Edit.substr(1));
    OS << "### Adding argument " << Str << " at end\n";
    Args.push_back(Str);
  } else if (Edit[0] == 's' && Edit[1] == '/' && Edit.endswith("/") &&
             Edit.slice(2, Edit.size()-1).find('/') != llvm::StringRef::npos) {
    llvm::StringRef MatchPattern = Edit.substr(2).split('/').first;
    llvm::StringRef ReplPattern = Edit.substr(2).split('/').second;
    ReplPattern = ReplPattern.slice(0, ReplPattern.size()-1);

    for (unsigned i = 1, e = Args.size(); i != e; ++i) {
      std::string Repl = llvm::Regex(MatchPattern).sub(ReplPattern, Args[i]);

      if (Repl != Args[i]) {
        OS << "### Replacing '" << Args[i] << "' with '" << Repl << "'\n";
        Args[i] = SaveStringInSet(SavedStrings, Repl);
      }
    }
  } else if (Edit[0] == 'x' || Edit[0] == 'X') {
    std::string Option = Edit.substr(1, std::string::npos);
    for (unsigned i = 1; i < Args.size();) {
      if (Option == Args[i]) {
        OS << "### Deleting argument " << Args[i] << '\n';
        Args.erase(Args.begin() + i);
        if (Edit[0] == 'X') {
          if (i < Args.size()) {
            OS << "### Deleting argument " << Args[i] << '\n';
            Args.erase(Args.begin() + i);
          } else
            OS << "### Invalid X edit, end of command line!\n";
        }
      } else
        ++i;
    }
  } else if (Edit[0] == 'O') {
    for (unsigned i = 1; i < Args.size();) {
      const char *A = Args[i];
      if (A[0] == '-' && A[1] == 'O' &&
          (A[2] == '\0' ||
           (A[3] == '\0' && (A[2] == 's' || A[2] == 'z' ||
                             ('0' <= A[2] && A[2] <= '9'))))) {
        OS << "### Deleting argument " << Args[i] << '\n';
        Args.erase(Args.begin() + i);
      } else
        ++i;
    }
    OS << "### Adding argument " << Edit << " at end\n";
    Args.push_back(SaveStringInSet(SavedStrings, '-' + Edit.str()));
  } else {
    OS << "### Unrecognized edit: " << Edit << "\n";
  }
}
Example #2
0
/// \brief Attempt to inline all calls smaller than our threshold.
/// returns True if a function was inlined.
bool SILPerformanceInliner::inlineCallsIntoFunction(SILFunction *Caller,
                                                    DominanceAnalysis *DA,
                                                    SILLoopAnalysis *LA,
                             llvm::SmallVectorImpl<FullApplySite> &NewApplies) {
  // Don't optimize functions that are marked with the opt.never attribute.
  if (!Caller->shouldOptimize())
    return false;

  // Construct a log of all of the names of the functions that we've inlined
  // in the current iteration.
  SmallVector<StringRef, 16> InlinedFunctionNames;
  StringRef CallerName = Caller->getName();

  DEBUG(llvm::dbgs() << "Visiting Function: " << CallerName << "\n");

  assert(NewApplies.empty() && "Expected empty vector to store results in!");

  // First step: collect all the functions we want to inline.  We
  // don't change anything yet so that the dominator information
  // remains valid.
  SmallVector<FullApplySite, 8> AppliesToInline;
  collectAppliesToInline(Caller, AppliesToInline, DA, LA);

  if (AppliesToInline.empty())
    return false;

  // Second step: do the actual inlining.
  for (auto AI : AppliesToInline) {
    SILFunction *Callee = AI.getCalleeFunction();
    assert(Callee && "apply_inst does not have a direct callee anymore");

    DEBUG(llvm::dbgs() << "    Inline:" <<  *AI.getInstruction());

    if (!Callee->shouldOptimize()) {
      DEBUG(llvm::dbgs() << "    Cannot inline function " << Callee->getName()
                         << " marked to be excluded from optimizations.\n");
      continue;
    }
    
    SmallVector<SILValue, 8> Args;
    for (const auto &Arg : AI.getArguments())
      Args.push_back(Arg);

    // As we inline and clone we need to collect new applies.
    auto Filter = [](SILInstruction *I) -> bool {
      return bool(FullApplySite::isa(I));
    };

    CloneCollector Collector(Filter);

    // Notice that we will skip all of the newly inlined ApplyInsts. That's
    // okay because we will visit them in our next invocation of the inliner.
    TypeSubstitutionMap ContextSubs;
    SILInliner Inliner(*Caller, *Callee,
                       SILInliner::InlineKind::PerformanceInline,
                       ContextSubs, AI.getSubstitutions(),
                       Collector.getCallback());

    // Record the name of the inlined function (for cycle detection).
    InlinedFunctionNames.push_back(Callee->getName());

    auto Success = Inliner.inlineFunction(AI, Args);
    (void) Success;
    // We've already determined we should be able to inline this, so
    // we expect it to have happened.
    assert(Success && "Expected inliner to inline this function!");
    llvm::SmallVector<FullApplySite, 4> AppliesFromInlinee;
    for (auto &P : Collector.getInstructionPairs())
      AppliesFromInlinee.push_back(FullApplySite(P.first));

    recursivelyDeleteTriviallyDeadInstructions(AI.getInstruction(), true);

    NewApplies.insert(NewApplies.end(), AppliesFromInlinee.begin(),
                      AppliesFromInlinee.end());
    DA->invalidate(Caller, SILAnalysis::InvalidationKind::Everything);
    NumFunctionsInlined++;
  }

  // Record the names of the functions that we inlined.
  // We'll use this list to detect cycles in future iterations of
  // the inliner.
  for (auto CalleeName : InlinedFunctionNames) {
    InlinedFunctions.insert(std::make_pair(CallerName, CalleeName));
  }

  DEBUG(llvm::dbgs() << "\n");
  return true;
}
Example #3
0
static void ParseProgName(llvm::SmallVectorImpl<const char *> &ArgVector,
                          std::set<std::string> &SavedStrings,
                          Driver &TheDriver)
{
  // Try to infer frontend type and default target from the program name.

  // suffixes[] contains the list of known driver suffixes.
  // Suffixes are compared against the program name in order.
  // If there is a match, the frontend type is updated as necessary (CPP/C++).
  // If there is no match, a second round is done after stripping the last
  // hyphen and everything following it. This allows using something like
  // "mlang++-2.9".

  // If there is a match in either the first or second round,
  // the function tries to identify a target as prefix. E.g.
  // "x86_64-linux-mlang" as interpreted as suffix "mlang" with
  // target prefix "x86_64-linux". If such a target prefix is found,
  // is gets added via -ccc-host-triple as implicit first argument.
  static const struct {
    const char *Suffix;
    bool IsCXX;
    bool IsCPP;
  } suffixes [] = {
    { "mlang", false, false },
    { "mlang++", true, false },
    { "mlang-c++", true, false },
    { "mlang-cc", false, false },
    { "mlang-cpp", false, true },
    { "mlang-g++", true, false },
    { "mlang-gcc", false, false },
    { "cc", false, false },
    { "cpp", false, true },
    { "++", true, false },
  };
  std::string ProgName(llvm::sys::path::stem(ArgVector[0]));
  llvm::StringRef ProgNameRef(ProgName);
  llvm::StringRef Prefix;

  for (int Components = 2; Components; --Components) {
    bool FoundMatch = false;
    size_t i;

    for (i = 0; i < sizeof(suffixes) / sizeof(suffixes[0]); ++i) {
      if (ProgNameRef.endswith(suffixes[i].Suffix)) {
        FoundMatch = true;
        if (suffixes[i].IsCXX)
          TheDriver.CCCIsCXX = true;
        if (suffixes[i].IsCPP)
          TheDriver.CCCIsCPP = true;
        break;
      }
    }

    if (FoundMatch) {
      llvm::StringRef::size_type LastComponent = ProgNameRef.rfind('-',
        ProgNameRef.size() - strlen(suffixes[i].Suffix));
      if (LastComponent != llvm::StringRef::npos)
        Prefix = ProgNameRef.slice(0, LastComponent);
      break;
    }

    llvm::StringRef::size_type LastComponent = ProgNameRef.rfind('-');
    if (LastComponent == llvm::StringRef::npos)
      break;
    ProgNameRef = ProgNameRef.slice(0, LastComponent);
  }

  if (Prefix.empty())
    return;

  std::string IgnoredError;
  if (llvm::TargetRegistry::lookupTarget(Prefix, IgnoredError)) {
    ArgVector.insert(&ArgVector[1],
      SaveStringInSet(SavedStrings, Prefix));
    ArgVector.insert(&ArgVector[1],
      SaveStringInSet(SavedStrings, std::string("-ccc-host-triple")));
  }
}