int main(int argc, char*argv[])
{
  if(argc != 3)
    {
    std::cerr << "Required arguments: mask output" << std::endl;
    return EXIT_FAILURE;
    }

  std::string maskFilename = argv[1];
  std::string outputFilename = argv[2];

  std::cout << "Reading mask: " << maskFilename << std::endl;
  std::cout << "Output: " << outputFilename << std::endl;

  Mask::Pointer mask = Mask::New();
  mask->Read(maskFilename.c_str());

  Mask::BoundaryImageType::Pointer boundaryImage = Mask::BoundaryImageType::New();
  boundaryImage->SetRegions(mask->GetLargestPossibleRegion());
  boundaryImage->Allocate();
  
//  mask->CreateBoundaryImage(boundaryImage.GetPointer(), mask->GetValidValue());
  mask->CreateBoundaryImage(boundaryImage.GetPointer(), Mask::VALID);
  
  ITKHelpers::WriteImage(boundaryImage.GetPointer(), outputFilename);

  return EXIT_SUCCESS;
}
int main(int argc, char *argv[])
{
  if(argc != 4)
    {
    std::cerr << "Required arguments: image mask output" << std::endl;
    return EXIT_FAILURE;
    }
  std::string imageFilename = argv[1];
  std::string maskFilename = argv[2];
  std::string outputFilename = argv[3];

  Mask::Pointer mask = Mask::New();
  mask->Read(maskFilename);

  typedef itk::Image<unsigned char, 2> ImageType;
  ImageType::Pointer image = ImageType::New();
  ITKHelpers::ReadImage(imageFilename, image.GetPointer());

  FastDigitalInpainting fastDigitalInpainting;
  fastDigitalInpainting.SetImage(image);
  fastDigitalInpainting.SetMask(mask);
  fastDigitalInpainting.SetNumberOfIterations(100);
  fastDigitalInpainting.Inpaint();

  ITKHelpers::WriteImage(fastDigitalInpainting.GetOutput(), outputFilename);
  return EXIT_SUCCESS;
}
// Run with: image.png image.mask 15 filled.png
int main(int argc, char *argv[])
{
  // Verify arguments
  if(argc != 5)
  {
    std::cerr << "Required arguments: image.png image.mask patchHalfWidth output.png" << std::endl;
    std::cerr << "Input arguments: ";
    for(int i = 1; i < argc; ++i)
    {
      std::cerr << argv[i] << " ";
    }
    return EXIT_FAILURE;
  }

  // Parse arguments
  std::string imageFilename = argv[1];
  std::string maskFilename = argv[2];

  std::stringstream ssPatchRadius;
  ssPatchRadius << argv[3];
  unsigned int patchHalfWidth = 0;
  ssPatchRadius >> patchHalfWidth;

  std::string outputFilename = argv[4];

  // Output arguments
  std::cout << "Reading image: " << imageFilename << std::endl;
  std::cout << "Reading mask: " << maskFilename << std::endl;
  std::cout << "Patch half width: " << patchHalfWidth << std::endl;
  std::cout << "Output: " << outputFilename << std::endl;

  typedef itk::Image<itk::CovariantVector<float, 3>, 2> ImageType;

  typedef  itk::ImageFileReader<ImageType> ImageReaderType;
  ImageReaderType::Pointer imageReader = ImageReaderType::New();
  imageReader->SetFileName(imageFilename);
  imageReader->Update();

  ImageType::Pointer image = ImageType::New();
  ITKHelpers::DeepCopy(imageReader->GetOutput(), image.GetPointer());

  Mask::Pointer mask = Mask::New();
  mask->Read(maskFilename);

  std::cout << "Mask size: " << mask->GetLargestPossibleRegion().GetSize() << std::endl;
  std::cout << "hole pixels: " << mask->CountHolePixels() << std::endl;
  std::cout << "valid pixels: " << mask->CountValidPixels() << std::endl;

  // Setup the GUI system
  QApplication app( argc, argv );
  // Without this, after we close the first dialog
  // (after the first iteration that is not accepted automatically), the event loop quits.
  app.setQuitOnLastWindowClosed(false);

  DummyPatchesDriver(image, mask, patchHalfWidth);

  return app.exec();
}
Example #4
0
int main(int argc, char*argv[])
{
  if(argc < 4)
  {
    std::cerr << "Required arguments: image mask output" << std::endl;
    return EXIT_FAILURE;
  }

  std::string imageFilename = argv[1];
  std::string maskFilename = argv[2];
  std::string outputFilename = argv[3];

  std::cout << "imageFilename: " << imageFilename << std::endl;
  std::cout << "maskFilename: " << maskFilename << std::endl;
  std::cout << "outputFilename: " << outputFilename << std::endl;

  typedef itk::ImageFileReader<ImageType> ImageReaderType;
  ImageReaderType::Pointer imageReader = ImageReaderType::New();
  imageReader->SetFileName(imageFilename);
  imageReader->Update();

  Mask::Pointer sourceMask = Mask::New();
  sourceMask->Read(maskFilename);

  Mask::Pointer targetMask = Mask::New();
  targetMask->SetRegions(sourceMask->GetLargestPossibleRegion());
  targetMask->Allocate();
  ITKHelpers::SetImageToConstant(targetMask.GetPointer(), HoleMaskPixelTypeEnum::VALID);

  typedef SSD<ImageType> DistanceFunctorType;
  DistanceFunctorType* patchDistanceFunctor = new DistanceFunctorType;
  patchDistanceFunctor->SetImage(imageReader->GetOutput());

  typedef Propagator<DistanceFunctorType> PropagatorType;
  PropagatorType* propagationFunctor = new PropagatorType;

  typedef RandomSearch<ImageType, DistanceFunctorType> RandomSearchType;
  RandomSearchType* randomSearchFunctor = new RandomSearchType;

  typedef PatchMatch<ImageType, PropagatorType, RandomSearchType> PatchMatchType;
  PatchMatchType patchMatch;
  patchMatch.SetImage(imageReader->GetOutput());
  patchMatch.SetPatchRadius(3);
  
  patchMatch.SetPropagationFunctor(propagationFunctor);
  patchMatch.SetRandomSearchFunctor(randomSearchFunctor);

  patchMatch.Compute();

  NNFieldType::Pointer output = patchMatch.GetNNField();
  PatchMatchHelpers::WriteNNField(output.GetPointer(), "nnfield.mha");

  return EXIT_SUCCESS;
}
int main(int argc, char*argv[])
{
  if(argc != 4)
    {
    std::cerr << "Required arguments: image mask output" << std::endl;
    return EXIT_FAILURE;
    }

  std::string imageFilename = argv[1];
  std::string maskFilename = argv[2];
  std::string outputFilename = argv[3];

  std::cout << "Reading image: " << imageFilename << std::endl;
  std::cout << "Reading mask: " << maskFilename << std::endl;
  std::cout << "Output: " << outputFilename << std::endl;

  //typedef itk::Image<float, 2> ImageType;

  //typedef itk::Image<itk::CovariantVector<unsigned char, 3>, 2> ImageType;
//   ImageType::PixelType color;
//   color[0] = 0;
//   color[1] = 255;
//   color[2] = 0;

  typedef itk::VectorImage<float, 2> ImageType;
  
//   ImageType::PixelType color;
//   color.SetRed(0);
//   color.SetGreen(255);
//   color.SetBlue(0);


  typedef itk::ImageFileReader<ImageType> ImageReaderType;
  ImageReaderType::Pointer imageReader = ImageReaderType::New();
  imageReader->SetFileName(imageFilename.c_str());
  imageReader->Update();

  ImageType::PixelType value(imageReader->GetOutput()->GetNumberOfComponentsPerPixel());
  value.Fill(0);
  
  Mask::Pointer mask = Mask::New();
  mask->Read(maskFilename.c_str());

  mask->ApplyToImage(imageReader->GetOutput(), value);

  OutputHelpers::WriteImage(imageReader->GetOutput(), outputFilename);

  return EXIT_SUCCESS;
}
int main(int argc, char*argv[])
{
  if(argc != 2)
    {
    std::cerr << "Required arguments: mask" << std::endl;
    return EXIT_FAILURE;
    }

  std::string maskFilename = argv[1];

  std::cout << "Reading mask: " << maskFilename << std::endl;

  Mask::Pointer mask = Mask::New();
  mask->Read(maskFilename.c_str());

  std::cout << "There are " << mask->CountBoundaryPixels() << " boundary pixels." << std::endl;

  return EXIT_SUCCESS;
}
int main(int argc, char*argv[])
{
  if(argc != 5)
    {
    std::cerr << "Required arguments: image mask kernelRadius output" << std::endl;
    return EXIT_FAILURE;
    }

  std::string imageFilename = argv[1];
  std::string maskFilename = argv[2];

  std::stringstream ssRadius;
  ssRadius << argv[3];
  unsigned int kernelRadius = 0;
  ssRadius >> kernelRadius;

  std::string outputFilename = argv[4];

  std::cout << "Reading image: " << imageFilename << std::endl;
  std::cout << "Reading mask: " << maskFilename << std::endl;
  std::cout << "Kernel radius: " << kernelRadius << std::endl;
  std::cout << "Output: " << outputFilename << std::endl;

  typedef itk::Image<float, 2> ImageType;

  typedef itk::ImageFileReader<ImageType> ImageReaderType;
  ImageReaderType::Pointer imageReader = ImageReaderType::New();
  imageReader->SetFileName(imageFilename.c_str());
  imageReader->Update();

  Mask::Pointer mask = Mask::New();
  mask->Read(maskFilename.c_str());

  MaskOperations::MedianFilterInHole(imageReader->GetOutput(), mask, kernelRadius);

  OutputHelpers::WriteImage(imageReader->GetOutput(), outputFilename);

  return EXIT_SUCCESS;
}
int main(int argc, char *argv[])
{
  // Verify arguments
  if(argc != 5)
  {
    std::cerr << "Required arguments: image.png imageMask.mask patchHalfWidth targetPatch.png" << std::endl;
    std::cerr << "Input arguments: ";
    for(int i = 1; i < argc; ++i)
    {
      std::cerr << argv[i] << " ";
    }
    return EXIT_FAILURE;
  }

  // Parse arguments
  std::string imageFilename = argv[1];
  std::string maskFilename = argv[2];

  std::stringstream ssPatchHalfWidth;
  ssPatchHalfWidth << argv[3];
  unsigned int patchHalfWidth = 0;
  ssPatchHalfWidth >> patchHalfWidth;

  std::string targetPatchFileName = argv[4];

  // Output arguments
  std::cout << "Reading image: " << imageFilename << std::endl;
  std::cout << "Reading mask: " << maskFilename << std::endl;
  std::cout << "Patch half width: " << patchHalfWidth << std::endl;
  std::cout << "targetPatchFileName: " << targetPatchFileName << std::endl;

  typedef itk::Image<itk::CovariantVector<int, 3>, 2> OriginalImageType;

  typedef  itk::ImageFileReader<OriginalImageType> ImageReaderType;
  ImageReaderType::Pointer imageReader = ImageReaderType::New();
  imageReader->SetFileName(imageFilename);
  imageReader->Update();

  OriginalImageType* originalImage = imageReader->GetOutput();

  Mask::Pointer mask = Mask::New();
  mask->Read(maskFilename);

  itk::ImageRegion<2> fullRegion = originalImage->GetLargestPossibleRegion();

  // Blur the image
//  typedef TImage BlurredImageType; // Usually the blurred image is the same type as the original image.
//  typename BlurredImageType::Pointer blurredImage = BlurredImageType::New();
//  float blurVariance = 2.0f;
////  float blurVariance = 1.2f;
//  MaskOperations::MaskedBlur(originalImage.GetPointer(), mask, blurVariance, blurredImage.GetPointer());

//  ITKHelpers::WriteRGBImage(blurredImage.GetPointer(), "BlurredImage.png");

  typedef ImagePatchPixelDescriptor<OriginalImageType> ImagePatchPixelDescriptorType;

  // Create the graph
  typedef boost::grid_graph<2> VertexListGraphType;
  boost::array<std::size_t, 2> graphSideLengths = { { fullRegion.GetSize()[0],
                                                      fullRegion.GetSize()[1] } };
  std::shared_ptr<VertexListGraphType> graph(new VertexListGraphType(graphSideLengths));
  typedef boost::graph_traits<VertexListGraphType>::vertex_descriptor VertexDescriptorType;
  typedef boost::graph_traits<VertexListGraphType>::vertex_iterator VertexIteratorType;

  // Queue
  typedef IndirectPriorityQueue<VertexListGraphType> BoundaryNodeQueueType;
  std::shared_ptr<BoundaryNodeQueueType> boundaryNodeQueue(new BoundaryNodeQueueType(*graph));

  // Create the descriptor map. This is where the data for each pixel is stored.
  typedef boost::vector_property_map<ImagePatchPixelDescriptorType,
      BoundaryNodeQueueType::IndexMapType> ImagePatchDescriptorMapType;
  std::shared_ptr<ImagePatchDescriptorMapType> imagePatchDescriptorMap(new
      ImagePatchDescriptorMapType(num_vertices(*graph), *(boundaryNodeQueue->GetIndexMap())));

  // Create the descriptor visitor
  typedef ImagePatchDescriptorVisitor<VertexListGraphType, OriginalImageType, ImagePatchDescriptorMapType>
      ImagePatchDescriptorVisitorType;
  std::shared_ptr<ImagePatchDescriptorVisitorType> imagePatchDescriptorVisitor(new
      ImagePatchDescriptorVisitorType(originalImage, mask,
//        ImagePatchDescriptorVisitorType(blurredImage.GetPointer(), mask,
                                      imagePatchDescriptorMap, patchHalfWidth));

  // Create the inpainting visitor
//  typedef InpaintingVisitor<VertexListGraphType, BoundaryNodeQueueType,
//                            ImagePatchDescriptorVisitorType, AcceptanceVisitorType, PriorityType>
//                            InpaintingVisitorType;
//  std::shared_ptr<InpaintingVisitorType> inpaintingVisitor(new InpaintingVisitorType(mask, boundaryNodeQueue,
//                                          imagePatchDescriptorVisitor, acceptanceVisitor,
//                                          priorityFunction, patchHalfWidth, "InpaintingVisitor"));
//  inpaintingVisitor->SetAllowNewPatches(false);

//  // Initialize the boundary node queue from the user provided mask image.
//  InitializeFromMaskImage<InpaintingVisitorType, VertexDescriptorType>(mask, inpaintingVisitor.get());

//  // Create the nearest neighbor finder
//  typedef ImagePatchDifference<ImagePatchPixelDescriptorType,
//      SumSquaredPixelDifference<typename TImage::PixelType> > PatchDifferenceType;

//  // Write top patch grid at each iteration. To do this, we need a KNNSearcher
//  // to pass a list of valid patches to the FirstAndWrite class.
//  typedef LinearSearchKNNProperty<ImagePatchDescriptorMapType,
//                                  PatchDifferenceType > KNNSearchType;

//  unsigned int knn = 100;
//  std::shared_ptr<KNNSearchType> knnSearch(new KNNSearchType(imagePatchDescriptorMap, knn));

//  typedef LinearSearchBestFirstAndWrite<ImagePatchDescriptorMapType, TImage,
//                                   PatchDifferenceType> BestSearchType;
//  std::shared_ptr<BestSearchType> linearSearchBest(
//        new BestSearchType(*imagePatchDescriptorMap, originalImage, mask));

////  typedef KNNBestWrapper<KNNSearchType, BestSearchType> KNNWrapperType;
////  std::shared_ptr<KNNWrapperType> knnWrapper(new KNNWrapperType(knnSearch,
////                                                                linearSearchBest));


  return EXIT_SUCCESS;
}
// Run with: Data/trashcan.mha Data/trashcan_mask.mha 15 Data/trashcan.vtp Intensity filled.mha
int main(int argc, char *argv[])
{
  // Verify arguments
  if(argc != 6)
    {
    std::cerr << "Required arguments: image.mha imageMask.mha patch_half_width normals.vts output.mha" << std::endl;
    std::cerr << "Input arguments: ";
    for(int i = 1; i < argc; ++i)
      {
      std::cerr << argv[i] << " ";
      }
    return EXIT_FAILURE;
    }

  // Parse arguments
  std::string imageFilename = argv[1];
  std::string maskFilename = argv[2];

  std::stringstream ssPatchRadius;
  ssPatchRadius << argv[3];
  unsigned int patch_half_width = 0;
  ssPatchRadius >> patch_half_width;

  std::string normalsFileName = argv[4];

  std::string outputFilename = argv[5];

  // Output arguments
  std::cout << "Reading image: " << imageFilename << std::endl;
  std::cout << "Reading mask: " << maskFilename << std::endl;
  std::cout << "Patch half width: " << patch_half_width << std::endl;
  std::cout << "Reading normals: " << normalsFileName << std::endl;
  std::cout << "Output: " << outputFilename << std::endl;

  vtkSmartPointer<vtkXMLStructuredGridReader> structuredGridReader = vtkSmartPointer<vtkXMLStructuredGridReader>::New();
  structuredGridReader->SetFileName(normalsFileName.c_str());
  structuredGridReader->Update();
  
  typedef FloatVectorImageType ImageType;

  typedef  itk::ImageFileReader<ImageType> ImageReaderType;
  ImageReaderType::Pointer imageReader = ImageReaderType::New();
  imageReader->SetFileName(imageFilename);
  imageReader->Update();

  ImageType::Pointer image = ImageType::New();
  ITKHelpers::DeepCopy(imageReader->GetOutput(), image.GetPointer());

  Mask::Pointer mask = Mask::New();
  mask->Read(maskFilename);

  std::cout << "hole pixels: " << mask->CountHolePixels() << std::endl;
  std::cout << "valid pixels: " << mask->CountValidPixels() << std::endl;

  typedef ImagePatchPixelDescriptor<ImageType> ImagePatchPixelDescriptorType;
  typedef FeatureVectorPixelDescriptor FeatureVectorPixelDescriptorType;

  // Create the graph
  typedef boost::grid_graph<2> VertexListGraphType;
  boost::array<std::size_t, 2> graphSideLengths = { { imageReader->GetOutput()->GetLargestPossibleRegion().GetSize()[0],
                                                      imageReader->GetOutput()->GetLargestPossibleRegion().GetSize()[1] } };
  VertexListGraphType graph(graphSideLengths);
  typedef boost::graph_traits<VertexListGraphType>::vertex_descriptor VertexDescriptorType;

  // Get the index map
  typedef boost::property_map<VertexListGraphType, boost::vertex_index_t>::const_type IndexMapType;
  IndexMapType indexMap(get(boost::vertex_index, graph));

  // Create the priority map
  typedef boost::vector_property_map<float, IndexMapType> PriorityMapType;
  PriorityMapType priorityMap(num_vertices(graph), indexMap);

  // Create the node fill status map. Each pixel is either filled (true) or not filled (false).
  typedef boost::vector_property_map<bool, IndexMapType> FillStatusMapType;
  FillStatusMapType fillStatusMap(num_vertices(graph), indexMap);

  // Create the boundary status map. A node is on the current boundary if this property is true. 
  // This property helps the boundaryNodeQueue because we can mark here if a node has become no longer
  // part of the boundary, so when the queue is popped we can check this property to see if it should
  // actually be processed.
  typedef boost::vector_property_map<bool, IndexMapType> BoundaryStatusMapType;
  BoundaryStatusMapType boundaryStatusMap(num_vertices(graph), indexMap);

  // Create the descriptor map. This is where the data for each pixel is stored.
  typedef boost::vector_property_map<ImagePatchPixelDescriptorType, IndexMapType> ImagePatchDescriptorMapType;
  ImagePatchDescriptorMapType imagePatchDescriptorMap(num_vertices(graph), indexMap);

  // Create the descriptor map. This is where the data for each pixel is stored.
  typedef boost::vector_property_map<FeatureVectorPixelDescriptorType, IndexMapType> FeatureVectorDescriptorMapType;
  FeatureVectorDescriptorMapType featureVectorDescriptorMap(num_vertices(graph), indexMap);

  // Create the patch inpainter. The inpainter needs to know the status of each pixel to determine if they should be inpainted.
  typedef MaskedGridPatchInpainter<FillStatusMapType> InpainterType;
  InpainterType patchInpainter(patch_half_width, fillStatusMap);

  // Create the priority function
  typedef PriorityRandom PriorityType;
  PriorityType priorityFunction;

  // Create the boundary node queue. The priority of each node is used to order the queue.
  typedef boost::vector_property_map<std::size_t, IndexMapType> IndexInHeapMap;
  IndexInHeapMap index_in_heap(indexMap);

  // Create the priority compare functor
  typedef std::less<float> PriorityCompareType;
  PriorityCompareType lessThanFunctor;

  typedef boost::d_ary_heap_indirect<VertexDescriptorType, 4, IndexInHeapMap, PriorityMapType, PriorityCompareType> BoundaryNodeQueueType;
  BoundaryNodeQueueType boundaryNodeQueue(priorityMap, index_in_heap, lessThanFunctor);

  // Create the descriptor visitors
  typedef FeatureVectorPrecomputedStructuredGridNormalsDescriptorVisitor<VertexListGraphType, FeatureVectorDescriptorMapType> FeatureVectorPrecomputedStructuredGridNormalsDescriptorVisitorType;
  FeatureVectorPrecomputedStructuredGridNormalsDescriptorVisitorType featureVectorPrecomputedStructuredGridNormalsDescriptorVisitor(featureVectorDescriptorMap, structuredGridReader->GetOutput());

  typedef ImagePatchDescriptorVisitor<VertexListGraphType, ImageType, ImagePatchDescriptorMapType> ImagePatchDescriptorVisitorType;
  ImagePatchDescriptorVisitorType imagePatchDescriptorVisitor(image, mask, imagePatchDescriptorMap, patch_half_width);

  typedef CompositeDescriptorVisitor<VertexListGraphType> CompositeDescriptorVisitorType;
  CompositeDescriptorVisitorType compositeDescriptorVisitor;
  compositeDescriptorVisitor.AddVisitor(&imagePatchDescriptorVisitor);
  compositeDescriptorVisitor.AddVisitor(&featureVectorPrecomputedStructuredGridNormalsDescriptorVisitor);

  // Create the inpainting visitor
  typedef InpaintingVisitor<VertexListGraphType, ImageType, BoundaryNodeQueueType, FillStatusMapType,
                            CompositeDescriptorVisitorType, PriorityType, PriorityMapType, BoundaryStatusMapType> InpaintingVisitorType;
  InpaintingVisitorType inpaintingVisitor(image, mask, boundaryNodeQueue, fillStatusMap,
                                          compositeDescriptorVisitor, priorityMap, &priorityFunction, patch_half_width, boundaryStatusMap);

  InitializePriority(mask, boundaryNodeQueue, priorityMap, &priorityFunction, boundaryStatusMap);

  // Initialize the boundary node queue from the user provided mask image.
  InitializeFromMaskImage(mask, &inpaintingVisitor, graph, fillStatusMap);
  std::cout << "PatchBasedInpaintingNonInteractive: There are " << boundaryNodeQueue.size()
            << " nodes in the boundaryNodeQueue" << std::endl;

  // Create the nearest neighbor finder
//   typedef LinearSearchKNNProperty<FeatureVectorDescriptorMapType, FeatureVectorAngleDifference> KNNSearchType;
//   KNNSearchType linearSearchKNN(featureVectorDescriptorMap);
  typedef LinearSearchCriteriaProperty<FeatureVectorDescriptorMapType, FeatureVectorAngleDifference> ThresholdSearchType;
  //float maximumAngle = 0.34906585; // ~ 20 degrees
  float maximumAngle = 0.15; // ~ 10 degrees
  //float maximumAngle = 0.08; // ~ 5 degrees (this seems to be too strict)
  ThresholdSearchType thresholdSearchType(featureVectorDescriptorMap, maximumAngle);

  typedef LinearSearchBestProperty<ImagePatchDescriptorMapType, ImagePatchDifference<ImagePatchPixelDescriptorType> > BestSearchType;
  BestSearchType linearSearchBest(imagePatchDescriptorMap);

  TwoStepNearestNeighbor<ThresholdSearchType, BestSearchType> twoStepNearestNeighbor(thresholdSearchType, linearSearchBest);

  // Perform the inpainting
  std::cout << "Performing inpainting...: " << std::endl;
  inpainting_loop(graph, inpaintingVisitor, boundaryStatusMap, boundaryNodeQueue, twoStepNearestNeighbor, patchInpainter);

  HelpersOutput::WriteImage<ImageType>(image, outputFilename);

  return EXIT_SUCCESS;
}
// Run with: Data/trashcan.mha Data/trashcan_mask.mha 15 filled.mha
int main(int argc, char *argv[])
{
  // Verify arguments
  if(argc != 6)
    {
    std::cerr << "Required arguments: image.mha imageMask.mha patchHalfWidth neighborhoodRadius output.mha" << std::endl;
    std::cerr << "Input arguments: ";
    for(int i = 1; i < argc; ++i)
      {
      std::cerr << argv[i] << " ";
      }
    return EXIT_FAILURE;
    }

  // Parse arguments
  std::string imageFileName = argv[1];
  std::string maskFileName = argv[2];

  std::stringstream ssPatchRadius;
  ssPatchRadius << argv[3];
  unsigned int patchHalfWidth = 0;
  ssPatchRadius >> patchHalfWidth;

  // The percent of the image size to use as the neighborhood (0 - 1)
  std::stringstream ssNeighborhoodPercent;
  ssNeighborhoodPercent << argv[4];
  float neighborhoodPercent = 0;
  ssNeighborhoodPercent >> neighborhoodPercent;

  std::string outputFileName = argv[5];

  // Output arguments
  std::cout << "Reading image: " << imageFileName << std::endl;
  std::cout << "Reading mask: " << maskFileName << std::endl;
  std::cout << "Patch half width: " << patchHalfWidth << std::endl;
  std::cout << "Neighborhood percent: " << neighborhoodPercent << std::endl;
  std::cout << "Output: " << outputFileName << std::endl;

  typedef itk::Image<itk::CovariantVector<int, 3>, 2> ImageType;

  typedef  itk::ImageFileReader<ImageType> ImageReaderType;
  ImageReaderType::Pointer imageReader = ImageReaderType::New();
  imageReader->SetFileName(imageFileName);
  imageReader->Update();

  ImageType::Pointer image = ImageType::New();
  ITKHelpers::DeepCopy(imageReader->GetOutput(), image.GetPointer());

  Mask::Pointer mask = Mask::New();
  mask->Read(maskFileName);

  std::cout << "hole pixels: " << mask->CountHolePixels() << std::endl;
  std::cout << "valid pixels: " << mask->CountValidPixels() << std::endl;

  typedef ImagePatchPixelDescriptor<ImageType> ImagePatchPixelDescriptorType;

  // Create the graph
  typedef boost::grid_graph<2> VertexListGraphType;
  boost::array<std::size_t, 2> graphSideLengths = { { imageReader->GetOutput()->GetLargestPossibleRegion().GetSize()[0],
                                                      imageReader->GetOutput()->GetLargestPossibleRegion().GetSize()[1] } };
//  VertexListGraphType graph(graphSideLengths);
  std::shared_ptr<VertexListGraphType> graph(new VertexListGraphType(graphSideLengths));
  typedef boost::graph_traits<VertexListGraphType>::vertex_descriptor VertexDescriptorType;


  //ImagePatchDescriptorMapType smallImagePatchDescriptorMap(num_vertices(graph), indexMap);

  // Create the patch inpainter. The inpainter needs to know the status of each pixel to determine if they should be inpainted.

  typedef PatchInpainter<ImageType> ImageInpainterType;
  std::shared_ptr<ImageInpainterType> imagePatchInpainter(new
      ImageInpainterType(patchHalfWidth, image, mask));

  // Create the priority function
   typedef PriorityRandom PriorityType;
   std::shared_ptr<PriorityType> priorityFunction(new PriorityType);
//  typedef PriorityCriminisi<ImageType> PriorityType;
//  std::shared_ptr<PriorityType> priorityFunction(new PriorityType(image, mask, patchHalfWidth));

  typedef IndirectPriorityQueue<VertexListGraphType> BoundaryNodeQueueType;
  std::shared_ptr<BoundaryNodeQueueType> boundaryNodeQueue(new BoundaryNodeQueueType(*graph));

  // Create the descriptor map. This is where the data for each pixel is stored.
  typedef boost::vector_property_map<ImagePatchPixelDescriptorType, BoundaryNodeQueueType::IndexMapType> ImagePatchDescriptorMapType;
//  ImagePatchDescriptorMapType imagePatchDescriptorMap(num_vertices(graph), indexMap);
  std::shared_ptr<ImagePatchDescriptorMapType> imagePatchDescriptorMap(new
      ImagePatchDescriptorMapType(num_vertices(*graph), *(boundaryNodeQueue->GetIndexMap())));

  // Create the descriptor visitor
  typedef ImagePatchDescriptorVisitor<VertexListGraphType, ImageType, ImagePatchDescriptorMapType>
          ImagePatchDescriptorVisitorType;
//  ImagePatchDescriptorVisitorType imagePatchDescriptorVisitor(image, mask, imagePatchDescriptorMap, patchHalfWidth);
  std::shared_ptr<ImagePatchDescriptorVisitorType> imagePatchDescriptorVisitor(new
      ImagePatchDescriptorVisitorType(image.GetPointer(), mask,
                                      imagePatchDescriptorMap, patchHalfWidth));
/*   ImagePatchDescriptorVisitor(TImage* const in_image, Mask* const in_mask,
  std::shared_ptr<TDescriptorMap> in_descriptorMap,
  const unsigned int in_half_width) : */
  typedef ImagePatchDifference<ImagePatchPixelDescriptorType, SumAbsolutePixelDifference<ImageType::PixelType> >
            ImagePatchDifferenceType;

//  typedef CompositeDescriptorVisitor<VertexListGraphType> CompositeDescriptorVisitorType;
//  CompositeDescriptorVisitorType compositeDescriptorVisitor;
//  compositeDescriptorVisitor.AddVisitor(imagePatchDescriptorVisitor);

  // Create the descriptor visitor


//  typedef CompositeAcceptanceVisitor<VertexListGraphType> CompositeAcceptanceVisitorType;
//  CompositeAcceptanceVisitorType compositeAcceptanceVisitor;

  typedef DefaultAcceptanceVisitor<VertexListGraphType> AcceptanceVisitorType;
  std::shared_ptr<AcceptanceVisitorType> acceptanceVisitor(new AcceptanceVisitorType);

//  typedef AlwaysAccept<VertexListGraphType> AcceptanceVisitorType;
//  AcceptanceVisitorType acceptanceVisitor;



  // If the hole is less than 15% of the patch, always accept the initial best match
//  HoleSizeAcceptanceVisitor<VertexListGraphType> holeSizeAcceptanceVisitor(mask, patchHalfWidth, .15);
//  compositeAcceptanceVisitor.AddOverrideVisitor(&holeSizeAcceptanceVisitor);

//  AllQuadrantHistogramCompareAcceptanceVisitor<VertexListGraphType, ImageType>
//               allQuadrantHistogramCompareAcceptanceVisitor(image, mask, patchHalfWidth, 8.0f); // Crazy low
//  compositeAcceptanceVisitor.AddRequiredPassVisitor(&allQuadrantHistogramCompareAcceptanceVisitor);

//  template <typename TGraph, typename TBoundaryNodeQueue,
//            typename TDescriptorVisitor, typename TAcceptanceVisitor, typename TPriority>

  typedef InpaintingVisitor<VertexListGraphType, BoundaryNodeQueueType,
                            ImagePatchDescriptorVisitorType, AcceptanceVisitorType, PriorityType>
                            InpaintingVisitorType;
  std::shared_ptr<InpaintingVisitorType> inpaintingVisitor(new InpaintingVisitorType(mask, boundaryNodeQueue,
                                                                                     imagePatchDescriptorVisitor, acceptanceVisitor,
                                                                                     priorityFunction, patchHalfWidth, "InpaintingVisitor"));

//  typedef InpaintingVisitor<VertexListGraphType, BoundaryNodeQueueType,
//                            ImagePatchDescriptorVisitorType, AcceptanceVisitorType, PriorityType>
//                            InpaintingVisitorType;
//  std::shared_ptr<InpaintingVisitorType> inpaintingVisitor(new InpaintingVisitorType(mask, boundaryNodeQueue,
//                                          imagePatchDescriptorVisitor, acceptanceVisitor,
//                                          priorityFunction, patchHalfWidth, "InpaintingVisitor"));

//  typedef DebugVisitor<VertexListGraphType, ImageType, BoundaryStatusMapType, BoundaryNodeQueueType> DebugVisitorType;
//  DebugVisitorType debugVisitor(image, mask, patchHalfWidth, boundaryStatusMap, boundaryNodeQueue);

  LoggerVisitor<VertexListGraphType> loggerVisitor("log.txt");

  InitializePriority(mask, boundaryNodeQueue.get(), priorityFunction.get());
  // Initialize the boundary node queue from the user provided mask image.
  InitializeFromMaskImage<InpaintingVisitorType, VertexDescriptorType>(mask, inpaintingVisitor.get());

  // For debugging we use LinearSearchBestProperty instead of DefaultSearchBest because it can output the difference value.
  typedef LinearSearchBestProperty<ImagePatchDescriptorMapType,
                                   ImagePatchDifferenceType > BestSearchType;
  std::shared_ptr<BestSearchType> linearSearchBest(new BestSearchType(*imagePatchDescriptorMap));

  typedef NeighborhoodSearch<VertexDescriptorType, ImagePatchDescriptorMapType> NeighborhoodSearchType;
  NeighborhoodSearchType neighborhoodSearch(image->GetLargestPossibleRegion(), image->GetLargestPossibleRegion().GetSize()[0] * neighborhoodPercent, *imagePatchDescriptorMap);
  
  InpaintingAlgorithmWithLocalSearch<VertexListGraphType, InpaintingVisitorType,
                      BoundaryNodeQueueType, NeighborhoodSearchType,
                      ImageInpainterType, BestSearchType>(graph, inpaintingVisitor, boundaryNodeQueue,
                      linearSearchBest, imagePatchInpainter, neighborhoodSearch);

  // If the output filename is a png file, then use the RGBImage writer so that it is first
  // casted to unsigned char. Otherwise, write the file directly.
  if(Helpers::GetFileExtension(outputFileName) == "png")
  {
    ITKHelpers::WriteRGBImage(image.GetPointer(), outputFileName);
  }
  else
  {
    ITKHelpers::WriteImage(image.GetPointer(), outputFileName);
  }

  return EXIT_SUCCESS;
}
int main(int argc, char*argv[])
{
  // Parse the input
  if(argc < 6)
  {
    std::cerr << "Required arguments: image sourceMask.mask targetMask.mask patchRadius output" << std::endl;
    return EXIT_FAILURE;
  }

  std::stringstream ss;
  for(int i = 1; i < argc; ++i)
  {
    ss << argv[i] << " ";
  }

  std::string imageFilename;
  std::string sourceMaskFilename;
  std::string targetMaskFilename;
  unsigned int patchRadius;
  std::string outputFilename;

  ss >> imageFilename >> sourceMaskFilename >> targetMaskFilename >> patchRadius >> outputFilename;

  // Output the parsed values
  std::cout << "imageFilename: " << imageFilename << std::endl
            << "sourceMaskFilename: " << sourceMaskFilename << std::endl
            << "targetMaskFilename: " << targetMaskFilename << std::endl
            << "patchRadius: " << patchRadius << std::endl
            << "outputFilename: " << outputFilename << std::endl;

  typedef itk::Image<itk::CovariantVector<unsigned char, 3>, 2> ImageType;

  // Read the image and the masks
  typedef itk::ImageFileReader<ImageType> ImageReaderType;
  ImageReaderType::Pointer imageReader = ImageReaderType::New();
  imageReader->SetFileName(imageFilename);
  imageReader->Update();

  ImageType* image = imageReader->GetOutput();

  Mask::Pointer sourceMask = Mask::New();
  sourceMask->Read(sourceMaskFilename);

  Mask::Pointer targetMask = Mask::New();
  targetMask->Read(targetMaskFilename);

  //std::cout << "target mask has " << targetMask->CountHolePixels() << " hole pixels." << std::endl;

  // Poisson fill the input image
  typedef PoissonEditing<typename TypeTraits<ImageType::PixelType>::ComponentType> PoissonEditingType;

  typename PoissonEditingType::GuidanceFieldType::Pointer zeroGuidanceField =
            PoissonEditingType::GuidanceFieldType::New();
  zeroGuidanceField->SetRegions(image->GetLargestPossibleRegion());
  zeroGuidanceField->Allocate();
  typename PoissonEditingType::GuidanceFieldType::PixelType zeroPixel;
  zeroPixel.Fill(0);
  ITKHelpers::SetImageToConstant(zeroGuidanceField.GetPointer(), zeroPixel);

  PoissonEditingType::FillImage(image, targetMask,
                                zeroGuidanceField.GetPointer(), image);

  ITKHelpers::WriteRGBImage(image, "PoissonFilled.png");

  // PatchMatch requires that the target region be specified by valid pixels
  targetMask->InvertData();

  // Setup the patch distance functor
  SSD<ImageType> ssdFunctor;
  ssdFunctor.SetImage(image);

  // Setup the PatchMatch functor
  //PatchMatch<ImageType> patchMatchFunctor;
  PatchMatchRings<ImageType> patchMatchFunctor;
  patchMatchFunctor.SetPatchRadius(patchRadius);
  patchMatchFunctor.SetPatchDistanceFunctor(&ssdFunctor);
  patchMatchFunctor.SetIterations(1);

  InitializerRandom<ImageType> initializer;
  initializer.SetImage(image);
  initializer.SetTargetMask(targetMask);
  initializer.SetSourceMask(sourceMask);
  initializer.SetPatchDistanceFunctor(&ssdFunctor);
  initializer.SetPatchRadius(patchRadius);
  patchMatchFunctor.SetInitializer(&initializer);

  // Test the result of PatchMatch here
   patchMatchFunctor.SetRandom(false);

  // Here, the source match and target match are the same, specifying the classicial
  // "use pixels outside the hole to fill the pixels inside the hole".
  // In an interactive algorith, the user could manually specify a source region,
  // improving the resulting inpainting.
  BDSInpaintingMultiRes<ImageType> bdsInpainting;
  bdsInpainting.SetPatchRadius(patchRadius);
  bdsInpainting.SetImage(image);
  bdsInpainting.SetSourceMask(sourceMask);
  bdsInpainting.SetTargetMask(targetMask);

  bdsInpainting.SetIterations(1);
  //bdsInpainting.SetIterations(4);

  Compositor<ImageType> compositor;
  compositor.SetCompositingMethod(Compositor<ImageType>::AVERAGE);
  bdsInpainting.SetCompositor(&compositor);

  bdsInpainting.SetPatchMatchFunctor(&patchMatchFunctor);
  bdsInpainting.Inpaint();

  ITKHelpers::WriteRGBImage(bdsInpainting.GetOutput(), outputFilename);

  return EXIT_SUCCESS;
}
// Run with: Data/trashcan.png Data/trashcan.mask 15 filled.png
int main(int argc, char *argv[])
{
  // Verify arguments
  if(argc != 5)
  {
    std::cerr << "Required arguments: image.png imageMask.mask patchHalfWidth output.png" << std::endl;
    std::cerr << "Input arguments: ";
    for(int i = 1; i < argc; ++i)
    {
      std::cerr << argv[i] << " ";
    }
    return EXIT_FAILURE;
  }

  // Parse arguments
  std::string imageFilename = argv[1];
  std::string maskFilename = argv[2];

  std::stringstream ssPatchHalfWidth;
  ssPatchHalfWidth << argv[3];
  unsigned int patchHalfWidth = 0;
  ssPatchHalfWidth >> patchHalfWidth;

  std::string outputFileName = argv[4];

  // Output arguments
  std::cout << "Reading image: " << imageFilename << std::endl;
  std::cout << "Reading mask: " << maskFilename << std::endl;
  std::cout << "Patch half width: " << patchHalfWidth << std::endl;
  std::cout << "Output: " << outputFileName << std::endl;

  typedef itk::Image<itk::CovariantVector<int, 3>, 2> OriginalImageType;

  typedef  itk::ImageFileReader<OriginalImageType> ImageReaderType;
  ImageReaderType::Pointer imageReader = ImageReaderType::New();
  imageReader->SetFileName(imageFilename);
  imageReader->Update();

//  OriginalImageType* originalImage = imageReader->GetOutput();

  OriginalImageType::Pointer originalImage = OriginalImageType::New();
  ITKHelpers::DeepCopy(imageReader->GetOutput(), originalImage.GetPointer());

  Mask::Pointer mask = Mask::New();
  mask->Read(maskFilename);

  ClassicalImageInpaintingDebug(originalImage, mask, patchHalfWidth);

  // If the output filename is a png file, then use the RGBImage writer so that it is first
  // casted to unsigned char. Otherwise, write the file directly.
  if(Helpers::GetFileExtension(outputFileName) == "png")
  {
    ITKHelpers::WriteRGBImage(originalImage.GetPointer(), outputFileName);
  }
  else
  {
    ITKHelpers::WriteImage(originalImage.GetPointer(), outputFileName);
  }

  return EXIT_SUCCESS;
}
int main(int argc, char*argv[])
{
  // Parse the input
  if(argc < 6)
  {
    std::cerr << "Required arguments: image sourceMask.mask targetMask.mask patchRadius output" << std::endl;
    return EXIT_FAILURE;
  }

  std::stringstream ss;
  for(int i = 1; i < argc; ++i)
  {
    ss << argv[i] << " ";
  }

  std::string imageFilename;
  std::string sourceMaskFilename;
  std::string targetMaskFilename;
  unsigned int patchRadius;
  std::string outputFilename;

  ss >> imageFilename >> sourceMaskFilename >> targetMaskFilename >> patchRadius >> outputFilename;

  // Output the parsed values
  std::cout << "imageFilename: " << imageFilename << std::endl
            << "sourceMaskFilename: " << sourceMaskFilename << std::endl
            << "targetMaskFilename: " << targetMaskFilename << std::endl
            << "patchRadius: " << patchRadius << std::endl
            << "outputFilename: " << outputFilename << std::endl;

  typedef itk::Image<itk::CovariantVector<unsigned char, 3>, 2> ImageType;

  // Read the image and the masks
  typedef itk::ImageFileReader<ImageType> ImageReaderType;
  ImageReaderType::Pointer imageReader = ImageReaderType::New();
  imageReader->SetFileName(imageFilename);
  imageReader->Update();

  ImageType* image = imageReader->GetOutput();

  Mask::Pointer sourceMask = Mask::New();
  sourceMask->Read(sourceMaskFilename);

  Mask::Pointer targetMask = Mask::New();
  targetMask->Read(targetMaskFilename);

  // Poisson fill the input image in HSV space
  typedef itk::Image<itk::CovariantVector<float, 3>, 2> HSVImageType;
  HSVImageType::Pointer hsvImage = HSVImageType::New();
  ITKVTKHelpers::ConvertRGBtoHSV(image, hsvImage.GetPointer());

  ITKHelpers::WriteImage(image, "HSV.mha");

  typedef PoissonEditing<typename TypeTraits<HSVImageType::PixelType>::ComponentType> PoissonEditingType;

  typename PoissonEditingType::GuidanceFieldType::Pointer zeroGuidanceField =
            PoissonEditingType::GuidanceFieldType::New();
  zeroGuidanceField->SetRegions(hsvImage->GetLargestPossibleRegion());
  zeroGuidanceField->Allocate();
  typename PoissonEditingType::GuidanceFieldType::PixelType zeroPixel;
  zeroPixel.Fill(0);
  ITKHelpers::SetImageToConstant(zeroGuidanceField.GetPointer(), zeroPixel);

  PoissonEditingType::FillImage(hsvImage.GetPointer(), targetMask,
                                zeroGuidanceField.GetPointer(), hsvImage.GetPointer());

  ITKHelpers::WriteImage(image, "PoissonFilled_HSV.mha");

  ITKVTKHelpers::ConvertHSVtoRGB(hsvImage.GetPointer(), image);

  ITKHelpers::WriteRGBImage(image, "PoissonFilled_HSV.png");

  // PatchMatch requires that the target region be specified by valid pixels
  targetMask->InvertData();

  // Here, the source mask and target mask are the same, specifying the classicial
  // "use pixels outside the hole to fill the pixels inside the hole".
  // In an interactive algorith, the user could manually specify a source region,
  // improving the resulting inpainting.
  BDSInpaintingRings<ImageType> bdsInpainting;
  bdsInpainting.SetPatchRadius(patchRadius);
  bdsInpainting.SetImage(image);
  bdsInpainting.SetSourceMask(sourceMask);
  bdsInpainting.SetTargetMask(targetMask);

  bdsInpainting.SetIterations(1);
  //bdsInpainting.SetIterations(4);

  Compositor<ImageType, PixelCompositorAverage> compositor;
  bdsInpainting.Inpaint();

  ITKHelpers::WriteRGBImage(bdsInpainting.GetOutput(), outputFilename);

  return EXIT_SUCCESS;
}
// Run with: Data/trashcan.mha Data/trashcan_mask.mha 15 filled.mha
int main(int argc, char *argv[])
{
  // Verify arguments
  if(argc != 5)
    {
    std::cerr << "Required arguments: image.mha imageMask.mha patchHalfWidth output.mha" << std::endl;
    std::cerr << "Input arguments: ";
    for(int i = 1; i < argc; ++i)
      {
      std::cerr << argv[i] << " ";
      }
    return EXIT_FAILURE;
    }

  // Setup the GUI system
  QApplication app( argc, argv );

  // Parse arguments
  std::string imageFilename = argv[1];
  std::string maskFilename = argv[2];

  std::stringstream ssPatchRadius;
  ssPatchRadius << argv[3];
  unsigned int patchHalfWidth = 0;
  ssPatchRadius >> patchHalfWidth;

  std::string outputFilename = argv[4];

  // Output arguments
  std::cout << "Reading image: " << imageFilename << std::endl;
  std::cout << "Reading mask: " << maskFilename << std::endl;
  std::cout << "Patch half width: " << patchHalfWidth << std::endl;
  std::cout << "Output: " << outputFilename << std::endl;

  typedef FloatVectorImageType ImageType;

  typedef  itk::ImageFileReader<ImageType> ImageReaderType;
  ImageReaderType::Pointer imageReader = ImageReaderType::New();
  imageReader->SetFileName(imageFilename);
  imageReader->Update();

  ImageType* image = imageReader->GetOutput();
  itk::ImageRegion<2> fullRegion = imageReader->GetOutput()->GetLargestPossibleRegion();

  Mask::Pointer mask = Mask::New();
  mask->Read(maskFilename);

  std::cout << "hole pixels: " << mask->CountHolePixels() << std::endl;
  std::cout << "valid pixels: " << mask->CountValidPixels() << std::endl;

  std::cout << "image has " << image->GetNumberOfComponentsPerPixel() << " components." << std::endl;

  typedef ImagePatchPixelDescriptor<ImageType> ImagePatchPixelDescriptorType;

  // Create the graph
  typedef boost::grid_graph<2> VertexListGraphType;
  boost::array<std::size_t, 2> graphSideLengths = { { fullRegion.GetSize()[0],
                                                      fullRegion.GetSize()[1] } };
  VertexListGraphType graph(graphSideLengths);
  typedef boost::graph_traits<VertexListGraphType>::vertex_descriptor VertexDescriptorType;

  // Get the index map
  typedef boost::property_map<VertexListGraphType, boost::vertex_index_t>::const_type IndexMapType;
  IndexMapType indexMap(get(boost::vertex_index, graph));

  // Create the priority map
  typedef boost::vector_property_map<float, IndexMapType> PriorityMapType;
  PriorityMapType priorityMap(num_vertices(graph), indexMap);

  // Create the boundary status map. A node is on the current boundary if this property is true.
  // This property helps the boundaryNodeQueue because we can mark here if a node has become no longer
  // part of the boundary, so when the queue is popped we can check this property to see if it should
  // actually be processed.
  typedef boost::vector_property_map<bool, IndexMapType> BoundaryStatusMapType;
  BoundaryStatusMapType boundaryStatusMap(num_vertices(graph), indexMap);

  // Create the descriptor map. This is where the data for each pixel is stored.
  typedef boost::vector_property_map<ImagePatchPixelDescriptorType, IndexMapType> ImagePatchDescriptorMapType;
  ImagePatchDescriptorMapType imagePatchDescriptorMap(num_vertices(graph), indexMap);

  //ImagePatchDescriptorMapType smallImagePatchDescriptorMap(num_vertices(graph), indexMap);

  // Create the patch inpainter. The inpainter needs to know the status of each
  // pixel to determine if they should be inpainted.
  typedef MaskImagePatchInpainter InpainterType;
  MaskImagePatchInpainter patchInpainter(patchHalfWidth, mask);

  // Create the priority function
//   typedef PriorityRandom PriorityType;
//   PriorityType priorityFunction;
  typedef PriorityOnionPeel PriorityType;
  PriorityType priorityFunction(mask, patchHalfWidth);

  // Create the boundary node queue. The priority of each node is used to order the queue.
  typedef boost::vector_property_map<std::size_t, IndexMapType> IndexInHeapMap;
  IndexInHeapMap index_in_heap(indexMap);

  // Create the priority compare functor (we want the highest priority nodes to be first in the queue)
  typedef std::greater<float> PriorityCompareType;
  PriorityCompareType lessThanFunctor;

  typedef boost::d_ary_heap_indirect<VertexDescriptorType, 4, IndexInHeapMap, PriorityMapType, PriorityCompareType>
                                    BoundaryNodeQueueType;
  BoundaryNodeQueueType boundaryNodeQueue(priorityMap, index_in_heap, lessThanFunctor);

  // Create the descriptor visitor
  typedef ImagePatchDescriptorVisitor<VertexListGraphType, ImageType, ImagePatchDescriptorMapType>
          ImagePatchDescriptorVisitorType;
  ImagePatchDescriptorVisitorType imagePatchDescriptorVisitor(image, mask, imagePatchDescriptorMap, patchHalfWidth);
  //ImagePatchDescriptorVisitorType imagePatchDescriptorVisitor(cielabImage,
  //                                                            mask, imagePatchDescriptorMap, patchHalfWidth);

  typedef ImagePatchDifference<ImagePatchPixelDescriptorType, SumAbsolutePixelDifference<ImageType::PixelType> >
            ImagePatchDifferenceType;
  ImagePatchDifferenceType imagePatchDifferenceFunction;

//   typedef WeightedSumAbsolutePixelDifference<ImageType::PixelType> PixelDifferenceFunctorType;
//   PixelDifferenceFunctorType pixelDifferenceFunctor;
//   std::vector<float> weights;
//   weights.push_back(1.0f);
//   weights.push_back(1.0f);
//   weights.push_back(1.0f);
//   float gradientWeight = 500.0f;
//   weights.push_back(gradientWeight);
//   weights.push_back(gradientWeight);
//   pixelDifferenceFunctor.Weights = weights;
//   std::cout << "Weights: ";
//   OutputHelpers::OutputVector(pixelDifferenceFunctor.Weights);

//   typedef ImagePatchDifference<ImagePatchPixelDescriptorType, PixelDifferenceFunctorType >
//           ImagePatchDifferenceType;
// 
//   ImagePatchDifferenceType imagePatchDifferenceFunction(pixelDifferenceFunctor);

  typedef CompositeDescriptorVisitor<VertexListGraphType> CompositeDescriptorVisitorType;
  CompositeDescriptorVisitorType compositeDescriptorVisitor;
  compositeDescriptorVisitor.AddVisitor(&imagePatchDescriptorVisitor);

  typedef CompositeAcceptanceVisitor<VertexListGraphType> CompositeAcceptanceVisitorType;
  CompositeAcceptanceVisitorType compositeAcceptanceVisitor;

  typedef InpaintingVisitor<VertexListGraphType, ImageType, BoundaryNodeQueueType,
                            CompositeDescriptorVisitorType, CompositeAcceptanceVisitorType, PriorityType,
                            PriorityMapType, BoundaryStatusMapType>
                            InpaintingVisitorType;
  InpaintingVisitorType inpaintingVisitor(image, mask, boundaryNodeQueue,
                                          compositeDescriptorVisitor, compositeAcceptanceVisitor, priorityMap,
                                          &priorityFunction, patchHalfWidth,
                                          boundaryStatusMap, outputFilename);

  typedef DisplayVisitor<VertexListGraphType, ImageType> DisplayVisitorType;
  DisplayVisitorType displayVisitor(image, mask, patchHalfWidth);

  typedef DebugVisitor<VertexListGraphType, ImageType, BoundaryStatusMapType, BoundaryNodeQueueType>
          DebugVisitorType;
  DebugVisitorType debugVisitor(image, mask, patchHalfWidth, boundaryStatusMap, boundaryNodeQueue);

  LoggerVisitor<VertexListGraphType> loggerVisitor("log.txt");

  PaintPatchVisitor<VertexListGraphType, ImageType> inpaintRGBVisitor(image,
                                                                      mask.GetPointer(), patchHalfWidth);

  typedef CompositeInpaintingVisitor<VertexListGraphType> CompositeInpaintingVisitorType;
  CompositeInpaintingVisitorType compositeInpaintingVisitor;
  compositeInpaintingVisitor.AddVisitor(&inpaintingVisitor);
  //compositeInpaintingVisitor.AddVisitor(&inpaintRGBVisitor);
  compositeInpaintingVisitor.AddVisitor(&displayVisitor);
  compositeInpaintingVisitor.AddVisitor(&debugVisitor);
  //compositeInpaintingVisitor.AddVisitor(&loggerVisitor);

  InitializePriority(mask, boundaryNodeQueue, priorityMap, &priorityFunction, boundaryStatusMap);

  // Initialize the boundary node queue from the user provided mask image.
  InitializeFromMaskImage<CompositeInpaintingVisitorType, VertexDescriptorType>(mask, &compositeInpaintingVisitor);

  // Create the nearest neighbor finders
  typedef LinearSearchKNNProperty<ImagePatchDescriptorMapType,
                                  ImagePatchDifferenceType > KNNSearchType;
  KNNSearchType knnSearch(imagePatchDescriptorMap, 50000, 1, imagePatchDifferenceFunction);

  // For debugging we use LinearSearchBestProperty instead of DefaultSearchBest
  // because it can output the difference value.
  typedef LinearSearchBestProperty<ImagePatchDescriptorMapType,
                                   ImagePatchDifferenceType > BestSearchType;
  BestSearchType bestSearch(imagePatchDescriptorMap, imagePatchDifferenceFunction);

  BasicViewerWidget<ImageType> basicViewerWidget(image, mask);
  basicViewerWidget.show();
  
  // These connections are Qt::BlockingQueuedConnection because the algorithm quickly
  // goes on to fill the hole, and since we are sharing the image memory, we want to make sure these things are
  // refreshed at the right time, not after the hole has already been filled
  // (this actually happens, it is not just a theoretical thing).
  QObject::connect(&displayVisitor, SIGNAL(signal_RefreshImage()), &basicViewerWidget, SLOT(slot_UpdateImage()),
                   Qt::BlockingQueuedConnection);
  QObject::connect(&displayVisitor, SIGNAL(signal_RefreshSource(const itk::ImageRegion<2>&,
                                                                const itk::ImageRegion<2>&)),
                   &basicViewerWidget, SLOT(slot_UpdateSource(const itk::ImageRegion<2>&,
                                                              const itk::ImageRegion<2>&)),
                   Qt::BlockingQueuedConnection);
  QObject::connect(&displayVisitor, SIGNAL(signal_RefreshTarget(const itk::ImageRegion<2>&)),
                   &basicViewerWidget, SLOT(slot_UpdateTarget(const itk::ImageRegion<2>&)),
                   Qt::BlockingQueuedConnection);
  QObject::connect(&displayVisitor, SIGNAL(signal_RefreshResult(const itk::ImageRegion<2>&,
                                                                const itk::ImageRegion<2>&)),
                   &basicViewerWidget, SLOT(slot_UpdateResult(const itk::ImageRegion<2>&,
                                                              const itk::ImageRegion<2>&)),
                   Qt::BlockingQueuedConnection);

//   TopPatchesDialog<ImageType> topPatchesDialog(image, mask, patchHalfWidth, &basicViewerWidget);
//   typedef VisualSelectionBest<ImageType> ManualSearchType;
//   ManualSearchType manualSearchBest(image, mask, patchHalfWidth, &topPatchesDialog);

  typedef DefaultSearchBest ManualSearchType;
  DefaultSearchBest manualSearchBest;
  
  // By specifying the radius as the image size/8, we are searching up to 1/4 of the image each time
  typedef NeighborhoodSearch<VertexDescriptorType> NeighborhoodSearchType;
  NeighborhoodSearchType neighborhoodSearch(fullRegion, fullRegion.GetSize()[0]/8);

  // Run the remaining inpainting
  QtConcurrent::run(boost::bind(InpaintingAlgorithmWithLocalSearch<
                                VertexListGraphType, CompositeInpaintingVisitorType, BoundaryStatusMapType,
                                BoundaryNodeQueueType, NeighborhoodSearchType, KNNSearchType, BestSearchType,
                                ManualSearchType, InpainterType>,
                                graph, compositeInpaintingVisitor, &boundaryStatusMap, &boundaryNodeQueue,
                                neighborhoodSearch, knnSearch, bestSearch, boost::ref(manualSearchBest),
                                patchInpainter));

  return app.exec();
}
int main(int argc, char* argv[])
{
  // Verify arguments
  if(argc < 5)
    {
    std::cout << "Usage: ImageToFill mask guidanceField outputImage" << std::endl;
    return EXIT_FAILURE;
    }

  // Parse arguments
  std::string targetImageFilename = argv[1];
  std::string maskFilename = argv[2];
  std::string guidanceFieldFilename = argv[3];
  std::string outputFilename = argv[4];

  // Output arguments
  std::cout << "Target image: " << targetImageFilename << std::endl
            << "Mask image: " << maskFilename << std::endl
            << "Guidance field: " << guidanceFieldFilename << std::endl
            << "Output image: " << outputFilename << std::endl;

  //typedef itk::VectorImage<float, 2> FloatVectorImageType;
  typedef itk::Image<float, 2> ImageType;

  // Read images
  typedef itk::ImageFileReader<ImageType> ImageReaderType;
  ImageReaderType::Pointer targetImageReader = ImageReaderType::New();
  targetImageReader->SetFileName(targetImageFilename);
  targetImageReader->Update();

  std::cout << "Read target image." << std::endl;

  // Read mask
  Mask::Pointer mask = Mask::New();
  mask->Read(maskFilename);

  std::cout << "Read mask." << std::endl;

  typedef itk::CovariantVector<float, 2> Vector2Type;
  typedef itk::Image<Vector2Type, 2> Vector2ImageType;
  typedef itk::ImageFileReader<Vector2ImageType> GuidanceFieldReaderType;

  GuidanceFieldReaderType::Pointer guidanceFieldReader = GuidanceFieldReaderType::New();
  guidanceFieldReader->SetFileName(guidanceFieldFilename);
  guidanceFieldReader->Update();

  std::cout << "Read guidance field." << std::endl;

  typedef PoissonEditing<float> PoissonEditingFilterType;
  PoissonEditingFilterType poissonFilter;
  poissonFilter.SetTargetImage(targetImageReader->GetOutput());
  poissonFilter.SetGuidanceField(guidanceFieldReader->GetOutput());
  poissonFilter.SetMask(mask);
  poissonFilter.FillMaskedRegion();

  // Write output
  ITKHelpers::WriteImage(poissonFilter.GetOutput(), outputFilename);
  // Helpers::WriteVectorImageAsPNG(output.GetPointer(), outputFilename);

  return EXIT_SUCCESS;
}