Example #1
0
bool BlockSolver<Traits>::updateStructure(const std::vector<HyperGraph::Vertex*>& vset, const HyperGraph::EdgeSet& edges)
{
  for (std::vector<HyperGraph::Vertex*>::const_iterator vit = vset.begin(); vit != vset.end(); ++vit) {
    OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*vit);
    int dim = v->dimension();
    if (! v->marginalized()){
      v->setColInHessian(_sizePoses);
      _sizePoses+=dim;
      _Hpp->rowBlockIndices().push_back(_sizePoses);
      _Hpp->colBlockIndices().push_back(_sizePoses);
      _Hpp->blockCols().push_back(typename SparseBlockMatrix<PoseMatrixType>::IntBlockMap());
      ++_numPoses;
      int ind = v->hessianIndex();
      PoseMatrixType* m = _Hpp->block(ind, ind, true);
      v->mapHessianMemory(m->data());
    } else {
      std::cerr << "updateStructure(): Schur not supported" << std::endl;
      abort();
    }
  }
  resizeVector(_sizePoses + _sizeLandmarks);

  for (HyperGraph::EdgeSet::const_iterator it = edges.begin(); it != edges.end(); ++it) {
    OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);

    for (size_t viIdx = 0; viIdx < e->vertices().size(); ++viIdx) {
      OptimizableGraph::Vertex* v1 = (OptimizableGraph::Vertex*) e->vertex(viIdx);
      int ind1 = v1->hessianIndex();
      int indexV1Bak = ind1;
      if (ind1 == -1)
        continue;
      for (size_t vjIdx = viIdx + 1; vjIdx < e->vertices().size(); ++vjIdx) {
        OptimizableGraph::Vertex* v2 = (OptimizableGraph::Vertex*) e->vertex(vjIdx);
        int ind2 = v2->hessianIndex();
        if (ind2 == -1)
          continue;
        ind1 = indexV1Bak;
        bool transposedBlock = ind1 > ind2;
        if (transposedBlock) // make sure, we allocate the upper triangular block
          std::swap(ind1, ind2);

        if (! v1->marginalized() && !v2->marginalized()) {
          PoseMatrixType* m = _Hpp->block(ind1, ind2, true);
          e->mapHessianMemory(m->data(), viIdx, vjIdx, transposedBlock);
        } else { 
          std::cerr << __PRETTY_FUNCTION__ << ": not supported" << std::endl;
        }
      }
    }

  }

  return true;
}
Example #2
0
  void SparseOptimizer::computeInitialGuess(EstimatePropagatorCost& costFunction)
  {
    OptimizableGraph::VertexSet emptySet;
    std::set<Vertex*> backupVertices;
    HyperGraph::VertexSet fixedVertices; // these are the root nodes where to start the initialization
    for (EdgeContainer::iterator it = _activeEdges.begin(); it != _activeEdges.end(); ++it) {
      OptimizableGraph::Edge* e = *it;
      for (size_t i = 0; i < e->vertices().size(); ++i) {
        OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(e->vertex(i));
	if (!v)
	  continue;
        if (v->fixed())
          fixedVertices.insert(v);
        else { // check for having a prior which is able to fully initialize a vertex
          for (EdgeSet::const_iterator vedgeIt = v->edges().begin(); vedgeIt != v->edges().end(); ++vedgeIt) {
            OptimizableGraph::Edge* vedge = static_cast<OptimizableGraph::Edge*>(*vedgeIt);
            if (vedge->vertices().size() == 1 && vedge->initialEstimatePossible(emptySet, v) > 0.) {
              //cerr << "Initialize with prior for " << v->id() << endl;
              vedge->initialEstimate(emptySet, v);
              fixedVertices.insert(v);
            }
          }
        }
        if (v->hessianIndex() == -1) {
          std::set<Vertex*>::const_iterator foundIt = backupVertices.find(v);
          if (foundIt == backupVertices.end()) {
            v->push();
            backupVertices.insert(v);
          }
        }
      }
    }

    EstimatePropagator estimatePropagator(this);
    estimatePropagator.propagate(fixedVertices, costFunction);

    // restoring the vertices that should not be initialized
    for (std::set<Vertex*>::iterator it = backupVertices.begin(); it != backupVertices.end(); ++it) {
      Vertex* v = *it;
      v->pop();
    }
    if (verbose()) {
      computeActiveErrors();
      cerr << "iteration= -1\t chi2= " << activeChi2()
          << "\t time= 0.0"
          << "\t cumTime= 0.0"
          << "\t (using initial guess from " << costFunction.name() << ")" << endl;
    }
  }
Example #3
0
void MainWindow::setRobustKernel()
{
  SparseOptimizer* optimizer = viewer->graph;
  bool robustKernel = cbRobustKernel->isChecked();
  double huberWidth = leKernelWidth->text().toDouble();  
  //odometry edges are those whose node ids differ by 1
  
  bool onlyLoop = cbOnlyLoop->isChecked();

  if (robustKernel) {
    QString strRobustKernel = coRobustKernel->currentText();
    AbstractRobustKernelCreator* creator = RobustKernelFactory::instance()->creator(strRobustKernel.toStdString());
    if (! creator) {
      cerr << strRobustKernel.toStdString() << " is not a valid robust kernel" << endl;
      return;
    }
    for (SparseOptimizer::EdgeSet::const_iterator it = optimizer->edges().begin(); it != optimizer->edges().end(); ++it) {
      OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
      if (onlyLoop) {
        if (e->vertices().size() >= 2 && std::abs(e->vertex(0)->id() - e->vertex(1)->id()) != 1) {
          e->setRobustKernel(creator->construct());
          e->robustKernel()->setDelta(huberWidth);
        }
      } else {
        e->setRobustKernel(creator->construct());
        e->robustKernel()->setDelta(huberWidth);
      }
    }    
  } else {
    for (SparseOptimizer::EdgeSet::const_iterator it = optimizer->edges().begin(); it != optimizer->edges().end(); ++it) {
      OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
      e->setRobustKernel(0);
    }
  }
}
  bool SparseOptimizer::gaugeFreedom()
  {
    if (vertices().empty())
      return false;

    int maxDim=0;
    for (HyperGraph::VertexIDMap::iterator it=vertices().begin(); it!=vertices().end(); ++it){
      OptimizableGraph::Vertex* v=static_cast<OptimizableGraph::Vertex*>(it->second); 
      maxDim = std::max(maxDim,v->dimension());
    }

    for (HyperGraph::VertexIDMap::iterator it=vertices().begin(); it!=vertices().end(); ++it){
      OptimizableGraph::Vertex* v=static_cast<OptimizableGraph::Vertex*>(it->second);
      if (v->dimension() == maxDim) {
        // test for fixed vertex
        if (v->fixed()) {
          return false;
        }
        // test for full dimension prior
        for (HyperGraph::EdgeSet::const_iterator eit = v->edges().begin(); eit != v->edges().end(); ++eit) {
          OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*eit);
          if (e->vertices().size() == 1 && e->dimension() == maxDim)
            return false;
        }
      }
    }
    return true;
  }
Example #5
0
bool BlockSolver<Traits>::buildSystem()
{
  // clear b vector
# ifdef G2O_OPENMP
# pragma omp parallel for default (shared) if (_optimizer->indexMapping().size() > 1000)
# endif
  for (int i = 0; i < static_cast<int>(_optimizer->indexMapping().size()); ++i) {
    OptimizableGraph::Vertex* v=_optimizer->indexMapping()[i];
    assert(v);
    v->clearQuadraticForm();
  }
  _Hpp->clear();
  if (_doSchur) {
    _Hll->clear();
    _Hpl->clear();
  }

  // resetting the terms for the pairwise constraints
  // built up the current system by storing the Hessian blocks in the edges and vertices
# ifndef G2O_OPENMP
  // no threading, we do not need to copy the workspace
  JacobianWorkspace& jacobianWorkspace = _optimizer->jacobianWorkspace();
# else
  // if running with threads need to produce copies of the workspace for each thread
  JacobianWorkspace jacobianWorkspace = _optimizer->jacobianWorkspace();
# pragma omp parallel for default (shared) firstprivate(jacobianWorkspace) if (_optimizer->activeEdges().size() > 100)
# endif
  for (int k = 0; k < static_cast<int>(_optimizer->activeEdges().size()); ++k) {
    OptimizableGraph::Edge* e = _optimizer->activeEdges()[k];
    e->linearizeOplus(jacobianWorkspace); // jacobian of the nodes' oplus (manifold)
    e->constructQuadraticForm();
#  ifndef NDEBUG
    for (size_t i = 0; i < e->vertices().size(); ++i) {
      const OptimizableGraph::Vertex* v = static_cast<const OptimizableGraph::Vertex*>(e->vertex(i));
      if (! v->fixed()) {
        bool hasANan = arrayHasNaN(jacobianWorkspace.workspaceForVertex(i), e->dimension() * v->dimension());
        if (hasANan) {
          std::cerr << "buildSystem(): NaN within Jacobian for edge " << e << " for vertex " << i << std::endl;
          break;
        }
      }
    }
#  endif
  }

  // flush the current system in a sparse block matrix
# ifdef G2O_OPENMP
# pragma omp parallel for default (shared) if (_optimizer->indexMapping().size() > 1000)
# endif
  for (int i = 0; i < static_cast<int>(_optimizer->indexMapping().size()); ++i) {
    OptimizableGraph::Vertex* v=_optimizer->indexMapping()[i];
    int iBase = v->colInHessian();
    if (v->marginalized())
      iBase+=_sizePoses;
    v->copyB(_b+iBase);
  }

  return 0;
}
  int SparseOptimizerIncremental::optimize(int iterations, bool online)
  {
    (void) iterations; // we only do one iteration anyhow
    OptimizationAlgorithm* solver = _algorithm;
    solver->init(online);

    int cjIterations=0;
    bool ok=true;

    if (! online || batchStep) {
      //cerr << "performing batch step" << endl;
      if (! online) {
        ok = _underlyingSolver->buildStructure();
        if (! ok) {
          cerr << __PRETTY_FUNCTION__ << ": Failure while building CCS structure" << endl;
          return 0;
        }
      }

      // copy over the updated estimate as new linearization point
      if (slamDimension == 3) {
        for (size_t i = 0; i < indexMapping().size(); ++i) {
          OnlineVertexSE2* v = static_cast<OnlineVertexSE2*>(indexMapping()[i]);
          v->setEstimate(v->updatedEstimate);
        }
      }
      else if (slamDimension == 6) {
        for (size_t i = 0; i < indexMapping().size(); ++i) {
          OnlineVertexSE3* v= static_cast<OnlineVertexSE3*>(indexMapping()[i]);
          v->setEstimate(v->updatedEstimate);
        }
      }

      SparseOptimizer::computeActiveErrors();
      SparseOptimizer::linearizeSystem();
      _underlyingSolver->buildSystem();

      int numBlocksRequired = _ivMap.size();
      if (_cmember.size() < numBlocksRequired) {
        _cmember.resize(2 * numBlocksRequired);
      }
      memset(_cmember.data(), 0, numBlocksRequired * sizeof(int));
      if (_ivMap.size() > 100) {
        for (size_t i = _ivMap.size() - 20; i < _ivMap.size(); ++i) {
          const HyperGraph::EdgeSet& eset = _ivMap[i]->edges();
          for (HyperGraph::EdgeSet::const_iterator it = eset.begin(); it != eset.end(); ++it) {
            OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
            OptimizableGraph::Vertex* v1 = static_cast<OptimizableGraph::Vertex*>(e->vertices()[0]);
            OptimizableGraph::Vertex* v2 = static_cast<OptimizableGraph::Vertex*>(e->vertices()[1]);
            if (v1->hessianIndex() >= 0)
              _cmember(v1->hessianIndex()) = 1;
            if (v2->hessianIndex() >= 0)
              _cmember(v2->hessianIndex()) = 1;
          }
        }
      }

      ok = _underlyingSolver->solve();

      // get the current cholesky factor along with the permutation
      _L = _solverInterface->L();
      if (_perm.size() < (int)_L->n)
        _perm.resize(2*_L->n);
      int* p = (int*)_L->Perm;
      for (size_t i = 0; i < _L->n; ++i)
        _perm[p[i]] = i;

    }
    else {
      // update the b vector
      for (HyperGraph::VertexSet::iterator it = _touchedVertices.begin(); it != _touchedVertices.end(); ++it) {
        OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*it);
        int iBase = v->colInHessian();
        v->copyB(_underlyingSolver->b() + iBase);
      }
      _solverInterface->solve(_underlyingSolver->x(), _underlyingSolver->b());
    }

    update(_underlyingSolver->x());
    ++cjIterations; 

    if (verbose()){
      computeActiveErrors();
      cerr
        << "nodes = " << vertices().size()
        << "\t edges= " << _activeEdges.size()
        << "\t chi2= " << FIXED(activeChi2())
        << endl;
    }

    if (vizWithGnuplot)
      gnuplotVisualization();

    if (! ok)
      return 0;
    return 1;
  }
  bool SparseOptimizerIncremental::updateInitialization(HyperGraph::VertexSet& vset, HyperGraph::EdgeSet& eset)
  {
    if (batchStep) {
      return SparseOptimizerOnline::updateInitialization(vset, eset);
    }

    for (HyperGraph::VertexSet::iterator it = vset.begin(); it != vset.end(); ++it) {
      OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*it);
      v->clearQuadraticForm(); // be sure that b is zero for this vertex
    }

    // get the touched vertices
    _touchedVertices.clear();
    for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) {
      OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
      OptimizableGraph::Vertex* v1 = static_cast<OptimizableGraph::Vertex*>(e->vertices()[0]);
      OptimizableGraph::Vertex* v2 = static_cast<OptimizableGraph::Vertex*>(e->vertices()[1]);
      if (! v1->fixed())
        _touchedVertices.insert(v1);
      if (! v2->fixed())
        _touchedVertices.insert(v2);
    }
    //cerr << PVAR(_touchedVertices.size()) << endl;

    // updating the internal structures
    std::vector<HyperGraph::Vertex*> newVertices;
    newVertices.reserve(vset.size());
    _activeVertices.reserve(_activeVertices.size() + vset.size());
    _activeEdges.reserve(_activeEdges.size() + eset.size());
    for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it)
      _activeEdges.push_back(static_cast<OptimizableGraph::Edge*>(*it));
    //cerr << "updating internal done." << endl;

    // update the index mapping
    size_t next = _ivMap.size();
    for (HyperGraph::VertexSet::iterator it = vset.begin(); it != vset.end(); ++it) {
      OptimizableGraph::Vertex* v=static_cast<OptimizableGraph::Vertex*>(*it);
      if (! v->fixed()){
        if (! v->marginalized()){
          v->setHessianIndex(next);
          _ivMap.push_back(v);
          newVertices.push_back(v);
          _activeVertices.push_back(v);
          next++;
        } 
        else // not supported right now
          abort();
      }
      else {
        v->setHessianIndex(-1);
      }
    }
    //cerr << "updating index mapping done." << endl;

    // backup the tempindex and prepare sorting structure
    VertexBackup backupIdx[_touchedVertices.size()];
    memset(backupIdx, 0, sizeof(VertexBackup) * _touchedVertices.size());
    int idx = 0;
    for (HyperGraph::VertexSet::iterator it = _touchedVertices.begin(); it != _touchedVertices.end(); ++it) {
      OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*it);
      backupIdx[idx].hessianIndex = v->hessianIndex();
      backupIdx[idx].vertex = v;
      backupIdx[idx].hessianData = v->hessianData();
      ++idx;
    }
    sort(backupIdx, backupIdx + _touchedVertices.size()); // sort according to the hessianIndex which is the same order as used later by the optimizer
    for (int i = 0; i < idx; ++i) {
      backupIdx[i].vertex->setHessianIndex(i);
    }
    //cerr << "backup tempindex done." << endl;

    // building the structure of the update
    _updateMat.clear(true); // get rid of the old matrix structure
    _updateMat.rowBlockIndices().clear();
    _updateMat.colBlockIndices().clear();
    _updateMat.blockCols().clear();

    // placing the current stuff in _updateMat
    MatrixXd* lastBlock = 0;
    int sizePoses = 0;
    for (int i = 0; i < idx; ++i) {
      OptimizableGraph::Vertex* v = backupIdx[i].vertex;
      int dim = v->dimension();
      sizePoses+=dim;
      _updateMat.rowBlockIndices().push_back(sizePoses);
      _updateMat.colBlockIndices().push_back(sizePoses);
      _updateMat.blockCols().push_back(SparseBlockMatrix<MatrixXd>::IntBlockMap());
      int ind = v->hessianIndex();
      //cerr << PVAR(ind) << endl;
      if (ind >= 0) {
        MatrixXd* m = _updateMat.block(ind, ind, true);
        v->mapHessianMemory(m->data());
        lastBlock = m;
      }
    }
    lastBlock->diagonal().array() += 1e-6; // HACK to get Eigen value > 0


    for (HyperGraph::EdgeSet::const_iterator it = eset.begin(); it != eset.end(); ++it) {
      OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
      OptimizableGraph::Vertex* v1 = (OptimizableGraph::Vertex*) e->vertices()[0];
      OptimizableGraph::Vertex* v2 = (OptimizableGraph::Vertex*) e->vertices()[1];

      int ind1 = v1->hessianIndex();
      if (ind1 == -1)
        continue;
      int ind2 = v2->hessianIndex();
      if (ind2 == -1)
        continue;
      bool transposedBlock = ind1 > ind2;
      if (transposedBlock) // make sure, we allocate the upper triangular block
        swap(ind1, ind2);

      MatrixXd* m = _updateMat.block(ind1, ind2, true);
      e->mapHessianMemory(m->data(), 0, 1, transposedBlock);
    }

    // build the system into _updateMat
    for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) {
      OptimizableGraph::Edge * e = static_cast<OptimizableGraph::Edge*>(*it);
      e->computeError();
    }
    for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) {
      OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
      e->linearizeOplus();
    }
    for (HyperGraph::EdgeSet::iterator it = eset.begin(); it != eset.end(); ++it) {
      OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
      e->constructQuadraticForm();
    }

    // restore the original data for the vertex
    for (int i = 0; i < idx; ++i) {
      backupIdx[i].vertex->setHessianIndex(backupIdx[i].hessianIndex);
      if (backupIdx[i].hessianData)
        backupIdx[i].vertex->mapHessianMemory(backupIdx[i].hessianData);
    }

    // update the structure of the real block matrix
    bool solverStatus = _algorithm->updateStructure(newVertices, eset);

    bool updateStatus = computeCholeskyUpdate();
    if (! updateStatus) {
      cerr << "Error while computing update" << endl;
    }

    cholmod_sparse* updateAsSparseFactor = cholmod_factor_to_sparse(_cholmodFactor, &_cholmodCommon);

    // convert CCS update by permuting back to the permutation of L
    if (updateAsSparseFactor->nzmax > _permutedUpdate->nzmax) {
      //cerr << "realloc _permutedUpdate" << endl;
      cholmod_reallocate_triplet(updateAsSparseFactor->nzmax, _permutedUpdate, &_cholmodCommon);
    }
    _permutedUpdate->nnz = 0;
    _permutedUpdate->nrow = _permutedUpdate->ncol = _L->n;
    {
      int* Ap = (int*)updateAsSparseFactor->p;
      int* Ai = (int*)updateAsSparseFactor->i;
      double* Ax = (double*)updateAsSparseFactor->x;
      int* Bj = (int*)_permutedUpdate->j;
      int* Bi = (int*)_permutedUpdate->i;
      double* Bx = (double*)_permutedUpdate->x;
      for (size_t c = 0; c < updateAsSparseFactor->ncol; ++c) {
        const int& rbeg = Ap[c];
        const int& rend = Ap[c+1];
        int cc = c / slamDimension;
        int coff = c % slamDimension;
        const int& cbase = backupIdx[cc].vertex->colInHessian();
        const int& ccol = _perm(cbase + coff);
        for (int j = rbeg; j < rend; j++) {
          const int& r = Ai[j];
          const double& val = Ax[j];

          int rr = r / slamDimension;
          int roff = r % slamDimension;
          const int& rbase = backupIdx[rr].vertex->colInHessian();
          
          int row = _perm(rbase + roff);
          int col = ccol;
          if (col > row) // lower triangular entry
            swap(col, row);
          Bi[_permutedUpdate->nnz] = row;
          Bj[_permutedUpdate->nnz] = col;
          Bx[_permutedUpdate->nnz] = val;
          ++_permutedUpdate->nnz;
        }
      }
    }
    cholmod_free_sparse(&updateAsSparseFactor, &_cholmodCommon);

#if 0
    cholmod_sparse* updatePermuted = cholmod_triplet_to_sparse(_permutedUpdate, _permutedUpdate->nnz, &_cholmodCommon);
    //writeCCSMatrix("update-permuted.txt", updatePermuted->nrow, updatePermuted->ncol, (int*)updatePermuted->p, (int*)updatePermuted->i, (double*)updatePermuted->x, false);
    _solverInterface->choleskyUpdate(updatePermuted);
    cholmod_free_sparse(&updatePermuted, &_cholmodCommon);
#else
    convertTripletUpdateToSparse();
    _solverInterface->choleskyUpdate(_permutedUpdateAsSparse);
#endif

    return solverStatus;
  }
Example #8
0
  void computeSimpleStars(StarSet& stars,
			  SparseOptimizer* optimizer,
			  EdgeLabeler* labeler,
			  EdgeCreator* creator,
			  OptimizableGraph::Vertex* gauge_,
			  std::string edgeTag,
			  std::string vertexTag,
			  int level,
			  int step,
			  int backboneIterations,
			  int starIterations,
			  double rejectionThreshold,
			  bool debug){

    cerr << "preforming the tree actions" << endl;
    HyperDijkstra d(optimizer);
    // compute a spanning tree based on the types of edges and vertices in the pool
    EdgeTypesCostFunction f(edgeTag, vertexTag, level);
    d.shortestPaths(gauge_,
        &f,
        std::numeric_limits< double >::max(),
        1e-6,
        false,
        std::numeric_limits< double >::max()/2);

    HyperDijkstra::computeTree(d.adjacencyMap());
    // constructs the stars on the backbone

    BackBoneTreeAction bact(optimizer, vertexTag, level, step);
    bact.init();

    cerr << "free edges size " << bact.freeEdges().size() << endl;

    // perform breadth-first visit of the visit tree and create the stars on the backbone
    d.visitAdjacencyMap(d.adjacencyMap(),&bact,true);
    stars.clear();

    for (VertexStarMultimap::iterator it=bact.vertexStarMultiMap().begin();
        it!=bact.vertexStarMultiMap().end(); it++){
      stars.insert(it->second);
    }
    cerr << "stars.size: " << stars.size() << endl;
    cerr << "size: " << bact.vertexStarMultiMap().size() << endl;


    //  for each star

    //    for all vertices in the backbone, select all edges leading/leaving from that vertex
    //    that are contained in freeEdges.

    //      mark the corresponding "open" vertices and add them to a multimap (vertex->star)

    //    select a gauge in the backbone

    //    push all vertices on the backbone

    //    compute an initial guess on the backbone

    //    one round of optimization backbone

    //    lock all vertices in the backbone

    //    push all "open" vertices

    //    for each open vertex,
    //      compute an initial guess given the backbone
    //      do some rounds of solveDirect
    //      if (fail)
    //        - remove the vertex and the edges in that vertex from the star
    //   - make the structures consistent

    //    pop all "open" vertices
    //    pop all "vertices" in the backbone
    //    unfix the vertices in the backbone

    int starNum=0;
    for (StarSet::iterator it=stars.begin(); it!=stars.end(); it++){
      Star* s =*it;
      HyperGraph::VertexSet backboneVertices = s->_lowLevelVertices;
      HyperGraph::EdgeSet backboneEdges = s->_lowLevelEdges;
      if (backboneEdges.empty())
	continue;


      // cerr << "optimizing backbone" << endl;
      // one of these  should be the gauge, to be simple we select the fisrt one in the backbone
      OptimizableGraph::VertexSet gauge;
      gauge.insert(*backboneVertices.begin());
      s->gauge()=gauge;
      s->optimizer()->push(backboneVertices);
      s->optimizer()->setFixed(gauge,true);
      s->optimizer()->initializeOptimization(backboneEdges);
      s->optimizer()->computeInitialGuess();
      s->optimizer()->optimize(backboneIterations);
      s->optimizer()->setFixed(backboneVertices, true);

      // cerr << "assignind edges.vertices not in bbone" << endl;
      HyperGraph::EdgeSet otherEdges;
      HyperGraph::VertexSet otherVertices;
      std::multimap<HyperGraph::Vertex*, HyperGraph::Edge*> vemap;
      for (HyperGraph::VertexSet::iterator bit=backboneVertices.begin(); bit!=backboneVertices.end(); bit++){
	HyperGraph::Vertex* v=*bit;
	for (HyperGraph::EdgeSet::iterator eit=v->edges().begin(); eit!=v->edges().end(); eit++){
	  OptimizableGraph::Edge* e = (OptimizableGraph::Edge*) *eit;
	  HyperGraph::EdgeSet::iterator feit=bact.freeEdges().find(e);
	  if (feit!=bact.freeEdges().end()){ // edge is admissible
	    otherEdges.insert(e);
	    bact.freeEdges().erase(feit);
	    for (size_t i=0; i<e->vertices().size(); i++){
	      OptimizableGraph::Vertex* ve= (OptimizableGraph::Vertex*)e->vertices()[i];
	      if (backboneVertices.find(ve)==backboneVertices.end()){
		otherVertices.insert(ve);
		vemap.insert(make_pair(ve,e));
	      }
	    }
	  }
	}
      }

      // RAINER TODO maybe need a better solution than dynamic casting here??
      OptimizationAlgorithmWithHessian* solverWithHessian = dynamic_cast<OptimizationAlgorithmWithHessian*>(s->optimizer()->solver());
      if (solverWithHessian) {
        s->optimizer()->push(otherVertices);
        // cerr << "optimizing vertices out of bbone" << endl;
        // cerr << "push" << endl;
        // cerr << "init" << endl;
        s->optimizer()->initializeOptimization(otherEdges);
        // cerr << "guess" << endl;
        s->optimizer()->computeInitialGuess();
        // cerr << "solver init" << endl;
        s->optimizer()->solver()->init();
        // cerr << "structure" << endl;
        if (!solverWithHessian->buildLinearStructure())
          cerr << "FATAL: failure while building linear structure" << endl;
        // cerr << "errors" << endl;
        s->optimizer()->computeActiveErrors();
        // cerr << "system" << endl;
        solverWithHessian->updateLinearSystem();
        // cerr << "directSolove" << endl;
      } else {
        cerr << "FATAL: hierarchical thing cannot be used with a solver that does not support the system structure construction" << endl;
      }


      // // then optimize the vertices one at a time to check if a solution is good
      for (HyperGraph::VertexSet::iterator vit=otherVertices.begin(); vit!=otherVertices.end(); vit++){
        OptimizableGraph::Vertex* v=(OptimizableGraph::Vertex*)(*vit);
        v->solveDirect();
        // cerr << " " << d;
        // if  a solution is found, add a vertex and all the edges in
        //othervertices that are pointing to that edge to the star
        s->_lowLevelVertices.insert(v);
        for (HyperGraph::EdgeSet::iterator eit=v->edges().begin(); eit!=v->edges().end(); eit++){
          OptimizableGraph::Edge* e = (OptimizableGraph::Edge*) *eit;
          if (otherEdges.find(e)!=otherEdges.end())
            s->_lowLevelEdges.insert(e);
        }
      }
      //cerr <<  endl;

      // relax the backbone and optimize it all
      // cerr << "relax bbone" << endl;
      s->optimizer()->setFixed(backboneVertices, false);
      //cerr << "fox gauge bbone" << endl;
      s->optimizer()->setFixed(s->gauge(),true);

      //cerr << "opt init" << endl;
      s->optimizer()->initializeOptimization(s->_lowLevelEdges);
      optimizer->computeActiveErrors();
      double initialChi = optimizer->activeChi2();
      int starOptResult = s->optimizer()->optimize(starIterations);
      //cerr << starOptResult << "(" << starIterations << ")  " << endl;
      double finalchi=-1.;

      cerr <<  "computing star: " << starNum << endl;

      int vKept=0, vDropped=0;
      if (!starIterations || starOptResult > 0  ){
	optimizer->computeActiveErrors();
	finalchi = optimizer->activeChi2();

#if 1

        s->optimizer()->computeActiveErrors();
        // cerr << "system" << endl;
        if (solverWithHessian)
          solverWithHessian->updateLinearSystem();
        HyperGraph::EdgeSet prunedStarEdges = backboneEdges;
        HyperGraph::VertexSet prunedStarVertices = backboneVertices;
        for (HyperGraph::VertexSet::iterator vit=otherVertices.begin(); vit!=otherVertices.end(); vit++){

	  //discard the vertices whose error is too big


          OptimizableGraph::Vertex* v=(OptimizableGraph::Vertex*)(*vit);
          MatrixXd h(v->dimension(), v->dimension());
          for (int i=0; i<v->dimension(); i++){
            for (int j=0; j<v->dimension(); j++)
              h(i,j)=v->hessian(i,j);
          }
          EigenSolver<Eigen::MatrixXd> esolver;
          esolver.compute(h);
          VectorXcd ev= esolver.eigenvalues();
          double emin = std::numeric_limits<double>::max();
          double emax = -std::numeric_limits<double>::max();
          for (int i=0; i<ev.size(); i++){
            emin = ev(i).real()>emin ? emin : ev(i).real();
            emax = ev(i).real()<emax ? emax : ev(i).real();
          }

          double d=emin/emax;


          // cerr << " " << d;
          if (d>rejectionThreshold){
	  // if  a solution is found, add a vertex and all the edges in
	  //othervertices that are pointing to that edge to the star
            prunedStarVertices.insert(v);
            for (HyperGraph::EdgeSet::iterator eit=v->edges().begin(); eit!=v->edges().end(); eit++){
              OptimizableGraph::Edge* e = (OptimizableGraph::Edge*) *eit;
              if (otherEdges.find(e)!=otherEdges.end())
                prunedStarEdges.insert(e);
            }
            //cerr << "K( " << v->id() << "," << d << ")" ;
            vKept ++;
          } else {
            vDropped++;
            //cerr << "R( " << v->id() << "," << d << ")" ;
          }
        }
        s->_lowLevelEdges=prunedStarEdges;
        s->_lowLevelVertices=prunedStarVertices;

#endif
	//cerr << "addHedges" << endl;
	//now add to the star the hierarchical edges
	std::vector<OptimizableGraph::Vertex*> vertices(2);
	vertices[0]= (OptimizableGraph::Vertex*) *s->_gauge.begin();

	for (HyperGraph::VertexSet::iterator vit=s->_lowLevelVertices.begin(); vit!=s->_lowLevelVertices.end(); vit++){
	  OptimizableGraph::Vertex* v=(OptimizableGraph::Vertex*)*vit;
	  vertices[1]=v;
	  if (v==vertices[0])
	    continue;
	  OptimizableGraph::Edge* e=creator->createEdge(vertices);
	  //rr << "creating edge" << e <<  Factory::instance()->tag(vertices[0]) << "->" <<  Factory::instance()->tag(v) <endl;
	  if (e) {
	    e->setLevel(level+1);
	    optimizer->addEdge(e);
	    s->_starEdges.insert(e);
	  } else {
            cerr << "HERE" << endl;
	    cerr << "FATAL, cannot create edge" << endl;
	  }
	}
      }

      cerr << " gauge: " << (*s->_gauge.begin())->id()
           << " kept: " << vKept
           << " dropped: " << vDropped
	   << " edges:" << s->_lowLevelEdges.size()
	   << " hedges" << s->_starEdges.size()
	   << " initial chi " << initialChi
	   << " final chi " << finalchi << endl;

      if (debug) {
	char starLowName[100];
	sprintf(starLowName, "star-%04d-low.g2o", starNum);
	ofstream starLowStream(starLowName);
	optimizer->saveSubset(starLowStream, s->_lowLevelEdges);
      }
      bool labelOk=false;
      if (!starIterations || starOptResult > 0)
        labelOk = s->labelStarEdges(0, labeler);
      if (labelOk) {
        if (debug) {
          char starHighName[100];
          sprintf(starHighName, "star-%04d-high.g2o", starNum);
          ofstream starHighStream(starHighName);
          optimizer->saveSubset(starHighStream, s->_starEdges);
        }
      } else {

        cerr << "FAILURE: " << starOptResult << endl;
      }
      starNum++;

      //label each hierarchical edge
      s->optimizer()->pop(otherVertices);
      s->optimizer()->pop(backboneVertices);
      s->optimizer()->setFixed(s->gauge(),false);
    }


    StarSet stars2;
    // now erase the stars that have 0 edges. They r useless
    for (StarSet::iterator it=stars.begin(); it!=stars.end(); it++){
      Star* s=*it;
      if (s->lowLevelEdges().size()==0) {
        delete s;
      } else
        stars2.insert(s);
    }
    stars=stars2;
  }
  bool SparseOptimizer::initializeOptimization
     (HyperGraph::VertexSet& vset, int level)
  {

    // Recorre todos los vertices introducidos en el optimizador.
    // Para cada vertice 'V' obtiene los edges de los que forma parte.
    // Para cada uno de esos edges, se mira si todos sus vertices estan en el
    // optimizador. Si lo estan, el edge se aniade a _activeEdges.
    // Si el vertice 'V' tiene algun edge con todos los demas vertices en el
    // optimizador, se aniade 'V' a _activeVertices

    // Al final se asignan unos indices internos para los vertices:
    // -1: vertices fijos
    // 0..n: vertices no fijos y NO marginalizables
    // n+1..m: vertices no fijos y marginalizables
    clearIndexMapping();
    _activeVertices.clear();
    _activeVertices.reserve(vset.size());
    _activeEdges.clear();

    set<Edge*> auxEdgeSet; // temporary structure to avoid duplicates

    for (HyperGraph::VertexSet::iterator
         it  = vset.begin();
         it != vset.end();
         it++)
    {
      OptimizableGraph::Vertex* v= (OptimizableGraph::Vertex*) *it;
      const OptimizableGraph::EdgeSet& vEdges=v->edges();
      // count if there are edges in that level. If not remove from the pool
      int levelEdges=0;
      for (OptimizableGraph::EdgeSet::const_iterator
           it  = vEdges.begin();
           it != vEdges.end();
           it++)
      {
        OptimizableGraph::Edge* e =
           reinterpret_cast<OptimizableGraph::Edge*>(*it);
        if (level < 0 || e->level() == level)
        {
          bool allVerticesOK = true;
          for (vector<HyperGraph::Vertex*>::const_iterator
               vit  = e->vertices().begin();
               vit != e->vertices().end();
               ++vit)
          {
            if (vset.find(*vit) == vset.end())
            {
              allVerticesOK = false;
              break;
            }
          }

          if (allVerticesOK)
          {
            auxEdgeSet.insert(reinterpret_cast<OptimizableGraph::Edge*>(*it));
            levelEdges++;
          }
        }
      }
      if (levelEdges)   _activeVertices.push_back(v);
    }

    _activeEdges.reserve(auxEdgeSet.size());
    for (set<Edge*>::iterator
         it = auxEdgeSet.begin();
         it != auxEdgeSet.end();
         ++it)
       _activeEdges.push_back(*it);

    sortVectorContainers();
    return buildIndexMapping(_activeVertices);
  }
Example #10
0
bool BlockSolver<Traits>::buildStructure(bool zeroBlocks)
{
  assert(_optimizer);

  size_t sparseDim = 0;
  _numPoses=0;
  _numLandmarks=0;
  _sizePoses=0;
  _sizeLandmarks=0;
  int* blockPoseIndices = new int[_optimizer->indexMapping().size()];
  int* blockLandmarkIndices = new int[_optimizer->indexMapping().size()];

  for (size_t i = 0; i < _optimizer->indexMapping().size(); ++i) {
    OptimizableGraph::Vertex* v = _optimizer->indexMapping()[i];
    int dim = v->dimension();
    if (! v->marginalized()){
      v->setColInHessian(_sizePoses);
      _sizePoses+=dim;
      blockPoseIndices[_numPoses]=_sizePoses;
      ++_numPoses;
    } else {
      v->setColInHessian(_sizeLandmarks);
      _sizeLandmarks+=dim;
      blockLandmarkIndices[_numLandmarks]=_sizeLandmarks;
      ++_numLandmarks;
    }
    sparseDim += dim;
  }
  resize(blockPoseIndices, _numPoses, blockLandmarkIndices, _numLandmarks, sparseDim);
  delete[] blockLandmarkIndices;
  delete[] blockPoseIndices;

  // allocate the diagonal on Hpp and Hll
  int poseIdx = 0;
  int landmarkIdx = 0;
  for (size_t i = 0; i < _optimizer->indexMapping().size(); ++i) {
    OptimizableGraph::Vertex* v = _optimizer->indexMapping()[i];
    if (! v->marginalized()){
      //assert(poseIdx == v->hessianIndex());
      PoseMatrixType* m = _Hpp->block(poseIdx, poseIdx, true);
      if (zeroBlocks)
        m->setZero();
      v->mapHessianMemory(m->data());
      ++poseIdx;
    } else {
      LandmarkMatrixType* m = _Hll->block(landmarkIdx, landmarkIdx, true);
      if (zeroBlocks)
        m->setZero();
      v->mapHessianMemory(m->data());
      ++landmarkIdx;
    }
  }
  assert(poseIdx == _numPoses && landmarkIdx == _numLandmarks);

  // temporary structures for building the pattern of the Schur complement
  SparseBlockMatrixHashMap<PoseMatrixType>* schurMatrixLookup = 0;
  if (_doSchur) {
    schurMatrixLookup = new SparseBlockMatrixHashMap<PoseMatrixType>(_Hschur->rowBlockIndices(), _Hschur->colBlockIndices());
    schurMatrixLookup->blockCols().resize(_Hschur->blockCols().size());
  }

  // here we assume that the landmark indices start after the pose ones
  // create the structure in Hpp, Hll and in Hpl
  for (SparseOptimizer::EdgeContainer::const_iterator it=_optimizer->activeEdges().begin(); it!=_optimizer->activeEdges().end(); ++it){
    OptimizableGraph::Edge* e = *it;

    for (size_t viIdx = 0; viIdx < e->vertices().size(); ++viIdx) {
      OptimizableGraph::Vertex* v1 = (OptimizableGraph::Vertex*) e->vertex(viIdx);
      int ind1 = v1->hessianIndex();
      if (ind1 == -1)
        continue;
      int indexV1Bak = ind1;
      for (size_t vjIdx = viIdx + 1; vjIdx < e->vertices().size(); ++vjIdx) {
        OptimizableGraph::Vertex* v2 = (OptimizableGraph::Vertex*) e->vertex(vjIdx);
        int ind2 = v2->hessianIndex();
        if (ind2 == -1)
          continue;
        ind1 = indexV1Bak;
        bool transposedBlock = ind1 > ind2;
        if (transposedBlock){ // make sure, we allocate the upper triangle block
          std::swap(ind1, ind2);
        }
        if (! v1->marginalized() && !v2->marginalized()){
          PoseMatrixType* m = _Hpp->block(ind1, ind2, true);
          if (zeroBlocks)
            m->setZero();
          e->mapHessianMemory(m->data(), viIdx, vjIdx, transposedBlock);
          if (_Hschur) {// assume this is only needed in case we solve with the schur complement
            schurMatrixLookup->addBlock(ind1, ind2);
          }
        } else if (v1->marginalized() && v2->marginalized()){
          // RAINER hmm.... should we ever reach this here????
          LandmarkMatrixType* m = _Hll->block(ind1-_numPoses, ind2-_numPoses, true);
          if (zeroBlocks)
            m->setZero();
          e->mapHessianMemory(m->data(), viIdx, vjIdx, false);
        } else { 
          if (v1->marginalized()){ 
            PoseLandmarkMatrixType* m = _Hpl->block(v2->hessianIndex(),v1->hessianIndex()-_numPoses, true);
            if (zeroBlocks)
              m->setZero();
            e->mapHessianMemory(m->data(), viIdx, vjIdx, true); // transpose the block before writing to it
          } else {
            PoseLandmarkMatrixType* m = _Hpl->block(v1->hessianIndex(),v2->hessianIndex()-_numPoses, true);
            if (zeroBlocks)
              m->setZero();
            e->mapHessianMemory(m->data(), viIdx, vjIdx, false); // directly the block
          }
        }
      }
    }
  }

  if (! _doSchur)
    return true;

  _DInvSchur->diagonal().resize(landmarkIdx);
  _Hpl->fillSparseBlockMatrixCCS(*_HplCCS);

  for (size_t i = 0; i < _optimizer->indexMapping().size(); ++i) {
    OptimizableGraph::Vertex* v = _optimizer->indexMapping()[i];
    if (v->marginalized()){
      const HyperGraph::EdgeSet& vedges=v->edges();
      for (HyperGraph::EdgeSet::const_iterator it1=vedges.begin(); it1!=vedges.end(); ++it1){
        for (size_t i=0; i<(*it1)->vertices().size(); ++i)
        {
          OptimizableGraph::Vertex* v1= (OptimizableGraph::Vertex*) (*it1)->vertex(i);
          if (v1->hessianIndex()==-1 || v1==v)
            continue;
          for  (HyperGraph::EdgeSet::const_iterator it2=vedges.begin(); it2!=vedges.end(); ++it2){
            for (size_t j=0; j<(*it2)->vertices().size(); ++j)
            {
              OptimizableGraph::Vertex* v2= (OptimizableGraph::Vertex*) (*it2)->vertex(j);
              if (v2->hessianIndex()==-1 || v2==v)
                continue;
              int i1=v1->hessianIndex();
              int i2=v2->hessianIndex();
              if (i1<=i2) {
                schurMatrixLookup->addBlock(i1, i2);
              }
            }
          }
        }
      }
    }
  }

  _Hschur->takePatternFromHash(*schurMatrixLookup);
  delete schurMatrixLookup;
  _Hschur->fillSparseBlockMatrixCCSTransposed(*_HschurTransposedCCS);

  return true;
}
Example #11
0
  void EstimatePropagator::propagate(OptimizableGraph::VertexSet& vset, 
      const EstimatePropagator::PropagateCost& cost, 
       const EstimatePropagator::PropagateAction& action,
       double maxDistance, 
       double maxEdgeCost)
  {
    reset();

    PriorityQueue frontier;
    for (OptimizableGraph::VertexSet::iterator vit=vset.begin(); vit!=vset.end(); ++vit){
      OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*vit);
      AdjacencyMap::iterator it = _adjacencyMap.find(v);
      assert(it != _adjacencyMap.end());
      it->second._distance = 0.;
      it->second._parent.clear();
      it->second._frontierLevel = 0;
      frontier.push(&it->second);
    }

    while(! frontier.empty()){
      AdjacencyMapEntry* entry = frontier.pop();
      OptimizableGraph::Vertex* u = entry->child();
      double uDistance = entry->distance();
      //cerr << "uDistance " << uDistance << endl;

      // initialize the vertex
      if (entry->_frontierLevel > 0) {
        action(entry->edge(), entry->parent(), u);
      }

      /* std::pair< OptimizableGraph::VertexSet::iterator, bool> insertResult = */ _visited.insert(u);
      OptimizableGraph::EdgeSet::iterator et = u->edges().begin();
      while (et != u->edges().end()){
        OptimizableGraph::Edge* edge = static_cast<OptimizableGraph::Edge*>(*et);
        ++et;

        int maxFrontier = -1;
        OptimizableGraph::VertexSet initializedVertices;
        for (size_t i = 0; i < edge->vertices().size(); ++i) {
          OptimizableGraph::Vertex* z = static_cast<OptimizableGraph::Vertex*>(edge->vertex(i));
          AdjacencyMap::iterator ot = _adjacencyMap.find(z);
          if (ot->second._distance != numeric_limits<double>::max()) {
            initializedVertices.insert(z);
            maxFrontier = (max)(maxFrontier, ot->second._frontierLevel);
          }
        }
        assert(maxFrontier >= 0);

        for (size_t i = 0; i < edge->vertices().size(); ++i) {
          OptimizableGraph::Vertex* z = static_cast<OptimizableGraph::Vertex*>(edge->vertex(i));
          if (z == u)
            continue;

          size_t wasInitialized = initializedVertices.erase(z);

          double edgeDistance = cost(edge, initializedVertices, z);
          if (edgeDistance > 0. && edgeDistance != std::numeric_limits<double>::max() && edgeDistance < maxEdgeCost) {
            double zDistance = uDistance + edgeDistance;
            //cerr << z->id() << " " << zDistance << endl;

            AdjacencyMap::iterator ot = _adjacencyMap.find(z);
            assert(ot!=_adjacencyMap.end());

            if (zDistance < ot->second.distance() && zDistance < maxDistance){
              //if (ot->second.inQueue)
                //cerr << "Updating" << endl;
              ot->second._distance = zDistance;
              ot->second._parent = initializedVertices;
              ot->second._edge = edge;
              ot->second._frontierLevel = maxFrontier + 1;
              frontier.push(&ot->second);
            }
          }

          if (wasInitialized > 0)
            initializedVertices.insert(z);

        }
      }
    }

    // writing debug information like cost for reaching each vertex and the parent used to initialize
#ifdef DEBUG_ESTIMATE_PROPAGATOR
    cerr << "Writing cost.dat" << endl;
    ofstream costStream("cost.dat");
    for (AdjacencyMap::const_iterator it = _adjacencyMap.begin(); it != _adjacencyMap.end(); ++it) {
      HyperGraph::Vertex* u = it->second.child();
      costStream << "vertex " << u->id() << "  cost " << it->second._distance << endl;
    }
    cerr << "Writing init.dat" << endl;
    ofstream initStream("init.dat");
    vector<AdjacencyMapEntry*> frontierLevels;
    for (AdjacencyMap::iterator it = _adjacencyMap.begin(); it != _adjacencyMap.end(); ++it) {
      if (it->second._frontierLevel > 0)
        frontierLevels.push_back(&it->second);
    }
    sort(frontierLevels.begin(), frontierLevels.end(), FrontierLevelCmp());
    for (vector<AdjacencyMapEntry*>::const_iterator it = frontierLevels.begin(); it != frontierLevels.end(); ++it) {
      AdjacencyMapEntry* entry       = *it;
      OptimizableGraph::Vertex* to   = entry->child();

      initStream << "calling init level = " << entry->_frontierLevel << "\t (";
      for (OptimizableGraph::VertexSet::iterator pit = entry->parent().begin(); pit != entry->parent().end(); ++pit) {
        initStream << " " << (*pit)->id();
      }
      initStream << " ) -> " << to->id() << endl;
    }
#endif

  }
Example #12
0
bool saveGnuplot(const std::string& gnudump, const HyperGraph::VertexSet& vertices, const HyperGraph::EdgeSet& edges)
{
  // seek for an action whose name is writeGnuplot in the library
  HyperGraphElementAction* saveGnuplot = HyperGraphActionLibrary::instance()->actionByName("writeGnuplot");
  if (! saveGnuplot ){
    cerr << __PRETTY_FUNCTION__ << ": no action \"writeGnuplot\" registered" << endl;
    return false;
  }
  WriteGnuplotAction::Parameters params;

  int maxDim = -1;
  int minDim = numeric_limits<int>::max();
  for (HyperGraph::VertexSet::const_iterator it = vertices.begin(); it != vertices.end(); ++it){
    OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*it);
    int vdim = v->dimension();
    maxDim = (std::max)(vdim, maxDim);
    minDim = (std::min)(vdim, minDim);
  }

  string extension = getFileExtension(gnudump);
  if (extension.size() == 0)
    extension = "dat";
  string baseFilename = getPureFilename(gnudump);

  // check for odometry edges
  bool hasOdomEdge = false;
  bool hasLandmarkEdge = false;
  for (HyperGraph::EdgeSet::const_iterator it = edges.begin(); it != edges.end(); ++it) {
    OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
    if (e->vertices().size() == 2) {
      if (edgeAllVertsSameDim(e, maxDim))
        hasOdomEdge = true;
      else
        hasLandmarkEdge = true;
    }
    if (hasOdomEdge && hasLandmarkEdge)
      break;
  }

  bool fileStatus = true;
  if (hasOdomEdge) {
    string odomFilename = baseFilename + "_odom_edges." + extension;
    cerr << "# saving " << odomFilename << " ... ";
    ofstream fout(odomFilename.c_str());
    if (! fout) {
      cerr << "Unable to open file" << endl;
      return false;
    }
    params.os = &fout;

    // writing odometry edges
    for (HyperGraph::EdgeSet::const_iterator it = edges.begin(); it != edges.end(); ++it) {
      OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
      if (e->vertices().size() != 2 || ! edgeAllVertsSameDim(e, maxDim))
        continue;
      (*saveGnuplot)(e, &params);
    }
    cerr << "done." << endl;
  }

  if (hasLandmarkEdge) {
    string filename = baseFilename + "_landmarks_edges." + extension;
    cerr << "# saving " << filename << " ... ";
    ofstream fout(filename.c_str());
    if (! fout) {
      cerr << "Unable to open file" << endl;
      return false;
    }
    params.os = &fout;

    // writing landmark edges
    for (HyperGraph::EdgeSet::const_iterator it = edges.begin(); it != edges.end(); ++it) {
      OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
      if (e->vertices().size() != 2 || edgeAllVertsSameDim(e, maxDim))
        continue;
      (*saveGnuplot)(e, &params);
    }
    cerr << "done." << endl;
  }

  if (1) {
    string filename = baseFilename + "_edges." + extension;
    cerr << "# saving " << filename << " ... ";
    ofstream fout(filename.c_str());
    if (! fout) {
      cerr << "Unable to open file" << endl;
      return false;
    }
    params.os = &fout;

    // writing all edges
    for (HyperGraph::EdgeSet::const_iterator it = edges.begin(); it != edges.end(); ++it) {
      OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);
      (*saveGnuplot)(e, &params);
    }
    cerr << "done." << endl;
  }

  if (1) {
    string filename = baseFilename + "_vertices." + extension;
    cerr << "# saving " << filename << " ... ";
    ofstream fout(filename.c_str());
    if (! fout) {
      cerr << "Unable to open file" << endl;
      return false;
    }
    params.os = &fout;

    for (HyperGraph::VertexSet::const_iterator it = vertices.begin(); it != vertices.end(); ++it){
      OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*it);
      (*saveGnuplot)(v, &params);
    }
    cerr << "done." << endl;
  }

  return fileStatus;
}