void Mapper::viewer() { pcl::visualization::CloudViewer viewer("viewer"); PointCloud::Ptr globalMap (new PointCloud); pcl::VoxelGrid<PointT> voxel; voxel.setLeafSize( resolution, resolution, resolution ); while (shutdownFlag == false) { static int cntGlobalUpdate = 0; if ( poseGraph.keyframes.size() <= this->keyframe_size ) { usleep(1000); continue; } // keyframe is updated PointCloud::Ptr tmp(new PointCloud()); if (cntGlobalUpdate % 15 == 0) { // update all frames cout<<"redrawing frames"<<endl; globalMap->clear(); for ( int i=0; i<poseGraph.keyframes.size(); i+=2 ) { PointCloud::Ptr cloud = this->generatePointCloud(poseGraph.keyframes[i]); *globalMap += *cloud; } } else { for ( int i=poseGraph.keyframes.size()-1; i>=0 && i>poseGraph.keyframes.size()-6; i-- ) { PointCloud::Ptr cloud = this->generatePointCloud(poseGraph.keyframes[i]); *globalMap += *cloud; } } cntGlobalUpdate ++ ; //voxel voxel.setInputCloud( globalMap ); voxel.filter( *tmp ); keyframe_size = poseGraph.keyframes.size(); globalMap->swap( *tmp ); viewer.showCloud( globalMap ); cout<<"points in global map: "<<globalMap->points.size()<<endl; } }
int main( int argc, char** argv ) { vector<cv::Mat> colorImgs, depthImgs; // 彩色图和深度图 vector<Eigen::Isometry3d> poses; // 相机位姿 ifstream fin("./data/pose.txt"); if (!fin) { cerr<<"cannot find pose file"<<endl; return 1; } for ( int i=0; i<5; i++ ) { boost::format fmt( "./data/%s/%d.%s" ); //图像文件格式 colorImgs.push_back( cv::imread( (fmt%"color"%(i+1)%"png").str() )); depthImgs.push_back( cv::imread( (fmt%"depth"%(i+1)%"pgm").str(), -1 )); // 使用-1读取原始图像 double data[7] = {0}; for ( int i=0; i<7; i++ ) { fin>>data[i]; } Eigen::Quaterniond q( data[6], data[3], data[4], data[5] ); Eigen::Isometry3d T(q); T.pretranslate( Eigen::Vector3d( data[0], data[1], data[2] )); poses.push_back( T ); } // 计算点云并拼接 // 相机内参 double cx = 325.5; double cy = 253.5; double fx = 518.0; double fy = 519.0; double depthScale = 1000.0; cout<<"正在将图像转换为点云..."<<endl; // 定义点云使用的格式:这里用的是XYZRGB typedef pcl::PointXYZRGB PointT; typedef pcl::PointCloud<PointT> PointCloud; // 新建一个点云 PointCloud::Ptr pointCloud( new PointCloud ); for ( int i=0; i<5; i++ ) { PointCloud::Ptr current( new PointCloud ); cout<<"转换图像中: "<<i+1<<endl; cv::Mat color = colorImgs[i]; cv::Mat depth = depthImgs[i]; Eigen::Isometry3d T = poses[i]; for ( int v=0; v<color.rows; v++ ) for ( int u=0; u<color.cols; u++ ) { unsigned int d = depth.ptr<unsigned short> ( v )[u]; // 深度值 if ( d==0 ) continue; // 为0表示没有测量到 if ( d >= 7000 ) continue; // 深度太大时不稳定,去掉 Eigen::Vector3d point; point[2] = double(d)/depthScale; point[0] = (u-cx)*point[2]/fx; point[1] = (v-cy)*point[2]/fy; Eigen::Vector3d pointWorld = T*point; PointT p ; p.x = pointWorld[0]; p.y = pointWorld[1]; p.z = pointWorld[2]; p.b = color.data[ v*color.step+u*color.channels() ]; p.g = color.data[ v*color.step+u*color.channels()+1 ]; p.r = color.data[ v*color.step+u*color.channels()+2 ]; current->points.push_back( p ); } // depth filter and statistical removal PointCloud::Ptr tmp ( new PointCloud ); pcl::StatisticalOutlierRemoval<PointT> statistical_filter; statistical_filter.setMeanK(50); statistical_filter.setStddevMulThresh(1.0); statistical_filter.setInputCloud(current); statistical_filter.filter( *tmp ); (*pointCloud) += *tmp; } pointCloud->is_dense = false; cout<<"点云共有"<<pointCloud->size()<<"个点."<<endl; // voxel filter pcl::VoxelGrid<PointT> voxel_filter; voxel_filter.setLeafSize( 0.01, 0.01, 0.01 ); // resolution PointCloud::Ptr tmp ( new PointCloud ); voxel_filter.setInputCloud( pointCloud ); voxel_filter.filter( *tmp ); tmp->swap( *pointCloud ); cout<<"滤波之后,点云共有"<<pointCloud->size()<<"个点."<<endl; pcl::io::savePCDFileBinary("map.pcd", *pointCloud ); return 0; }