RigidBodySystem::OutputVector<double> RigidBodySystem::output( const double& t, const RigidBodySystem::StateVector<double>& x, const RigidBodySystem::InputVector<double>& u) const { auto kinsol = tree->doKinematics(x.topRows(tree->num_positions), x.bottomRows(tree->num_velocities)); Eigen::VectorXd y(getNumOutputs()); assert(getNumStates() == x.size()); assert(getNumInputs() == u.size()); y.segment(0, getNumStates()) << x; int index = getNumStates(); for (const auto& s : sensors) { y.segment(index, s->getNumOutputs()) = s->output(t, kinsol, u); index += s->getNumOutputs(); } return y; }
RigidBodySystem::StateVector<double> RigidBodySystem::dynamics(const double& t, const RigidBodySystem::StateVector<double>& x, const RigidBodySystem::InputVector<double>& u) const { using namespace std; using namespace Eigen; eigen_aligned_unordered_map<const RigidBody *, Matrix<double, 6, 1> > f_ext; // todo: make kinematics cache once and re-use it (but have to make one per type) auto nq = tree->num_positions; auto nv = tree->num_velocities; auto num_actuators = tree->actuators.size(); auto q = x.topRows(nq); auto v = x.bottomRows(nv); auto kinsol = tree->doKinematics(q,v); // todo: preallocate the optimization problem and constraints, and simply update them then solve on each function eval. // happily, this clunkier version seems fast enough for now // the optimization framework should support this (though it has not been tested thoroughly yet) OptimizationProblem prog; auto const & vdot = prog.addContinuousVariables(nv,"vdot"); auto H = tree->massMatrix(kinsol); Eigen::MatrixXd H_and_neg_JT = H; { // loop through rigid body force elements and accumulate f_ext // todo: distinguish between AppliedForce and ConstraintForce // todo: have AppliedForce output tau (instead of f_ext). it's more direct, and just as easy to compute. int u_index = 0; const NullVector<double> force_state; // todo: will have to handle this case for (auto const & prop : props) { RigidBodyFrame* frame = prop->getFrame(); RigidBody* body = frame->body.get(); int num_inputs = 1; // todo: generalize this RigidBodyPropellor::InputVector<double> u_i(u.middleRows(u_index,num_inputs)); // todo: push the frame to body transform into the dynamicsBias method? Matrix<double,6,1> f_ext_i = transformSpatialForce(frame->transform_to_body,prop->output(t,force_state,u_i,kinsol)); if (f_ext.find(body)==f_ext.end()) f_ext[body] = f_ext_i; else f_ext[body] = f_ext[body]+f_ext_i; u_index += num_inputs; } } VectorXd C = tree->dynamicsBiasTerm(kinsol,f_ext); if (num_actuators > 0) C -= tree->B*u.topRows(num_actuators); { // apply contact forces const bool use_multi_contact = false; VectorXd phi; Matrix3Xd normal, xA, xB; vector<int> bodyA_idx, bodyB_idx; if (use_multi_contact) tree->potentialCollisions(kinsol,phi,normal,xA,xB,bodyA_idx,bodyB_idx); else tree->collisionDetect(kinsol,phi,normal,xA,xB,bodyA_idx,bodyB_idx); for (int i=0; i<phi.rows(); i++) { if (phi(i)<0.0) { // then i have contact double mu = 1.0; // todo: make this a parameter // todo: move this entire block to a shared an updated "contactJacobian" method in RigidBodyTree auto JA = tree->transformPointsJacobian(kinsol, xA.col(i), bodyA_idx[i], 0, false); auto JB = tree->transformPointsJacobian(kinsol, xB.col(i), bodyB_idx[i], 0, false); Vector3d this_normal = normal.col(i); // compute the surface tangent basis Vector3d tangent1; if (1.0 - this_normal(2) < EPSILON) { // handle the unit-normal case (since it's unit length, just check z) tangent1 << 1.0, 0.0, 0.0; } else if (1 + this_normal(2) < EPSILON) { tangent1 << -1.0, 0.0, 0.0; //same for the reflected case } else {// now the general case tangent1 << this_normal(1), -this_normal(0), 0.0; tangent1 /= sqrt(this_normal(1)*this_normal(1) + this_normal(0)*this_normal(0)); } Vector3d tangent2 = tangent1.cross(this_normal); Matrix3d R; // rotation into normal coordinates R << tangent1, tangent2, this_normal; auto J = R*(JA-JB); // J = [ D1; D2; n ] auto relative_velocity = J*v; // [ tangent1dot; tangent2dot; phidot ] if (false) { // spring law for normal force: fA_normal = -k*phi - b*phidot // and damping for tangential force: fA_tangent = -b*tangentdot (bounded by the friction cone) double k = 150, b = k / 10; // todo: put these somewhere better... or make them parameters? Vector3d fA; fA(2) = -k * phi(i) - b * relative_velocity(2); fA.head(2) = -std::min(b, mu*fA(2)/(relative_velocity.head(2).norm()+EPSILON)) * relative_velocity.head(2); // epsilon to avoid divide by zero // equal and opposite: fB = -fA. // tau = (R*JA)^T fA + (R*JB)^T fB = J^T fA C -= J.transpose()*fA; } else { // linear acceleration constraints (more expensive, but less tuning required for robot mass, etc) // note: this does not work for the multi-contact case (it overly constrains the motion of the link). Perhaps if I made them inequality constraints... static_assert(!use_multi_contact, "The acceleration contact constraints do not play well with multi-contact"); // phiddot = -2*alpha*phidot - alpha^2*phi // critically damped response // tangential_velocity_dot = -2*alpha*tangential_velocity double alpha = 20; // todo: put this somewhere better... or make them parameters? Vector3d desired_relative_acceleration = -2*alpha*relative_velocity; desired_relative_acceleration(2) += -alpha*alpha*phi(i); // relative_acceleration = J*vdot + R*(JAdotv - JBdotv) // uses the standard dnormal/dq = 0 assumption cout << "phi = " << phi << endl; cout << "desired acceleration = " << desired_relative_acceleration.transpose() << endl; // cout << "acceleration = " << (J*vdot + R*(JAdotv - JBdotv)).transpose() << endl; prog.addContinuousVariables(3,"contact normal force"); auto JAdotv = tree->transformPointsJacobianDotTimesV(kinsol, xA.col(i).eval(), bodyA_idx[i], 0); auto JBdotv = tree->transformPointsJacobianDotTimesV(kinsol, xB.col(i).eval(), bodyB_idx[i], 0); prog.addLinearEqualityConstraint(J,desired_relative_acceleration - R*(JAdotv - JBdotv),{vdot}); H_and_neg_JT.conservativeResize(NoChange,H_and_neg_JT.cols()+3); H_and_neg_JT.rightCols(3) = -J.transpose(); } } } } if (tree->getNumPositionConstraints()) { int nc = tree->getNumPositionConstraints(); const double alpha = 5.0; // 1/time constant of position constraint satisfaction (see my latex rigid body notes) prog.addContinuousVariables(nc,"position constraint force"); // don't actually need to use the decision variable reference that would be returned... // then compute the constraint force auto phi = tree->positionConstraints(kinsol); auto J = tree->positionConstraintsJacobian(kinsol,false); auto Jdotv = tree->positionConstraintsJacDotTimesV(kinsol); // phiddot = -2 alpha phidot - alpha^2 phi (0 + critically damped stabilization term) prog.addLinearEqualityConstraint(J,-(Jdotv + 2*alpha*J*v + alpha*alpha*phi),{vdot}); H_and_neg_JT.conservativeResize(NoChange,H_and_neg_JT.cols()+J.rows()); H_and_neg_JT.rightCols(J.rows()) = -J.transpose(); } // add [H,-J^T]*[vdot;f] = -C prog.addLinearEqualityConstraint(H_and_neg_JT,-C); prog.solve(); // prog.printSolution(); StateVector<double> dot(nq+nv); dot << kinsol.transformPositionDotMappingToVelocityMapping(Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Identity(nq, nq))*v, vdot.value(); return dot; }
RigidBodySystem::StateVector<double> RigidBodySystem::dynamics( const double& t, const RigidBodySystem::StateVector<double>& x, const RigidBodySystem::InputVector<double>& u) const { using namespace std; using namespace Eigen; eigen_aligned_unordered_map<const RigidBody*, Matrix<double, 6, 1> > f_ext; // todo: make kinematics cache once and re-use it (but have to make one per // type) auto nq = tree->num_positions; auto nv = tree->num_velocities; auto num_actuators = tree->actuators.size(); auto q = x.topRows(nq); auto v = x.bottomRows(nv); auto kinsol = tree->doKinematics(q, v); // todo: preallocate the optimization problem and constraints, and simply // update them then solve on each function eval. // happily, this clunkier version seems fast enough for now // the optimization framework should support this (though it has not been // tested thoroughly yet) OptimizationProblem prog; auto const& vdot = prog.AddContinuousVariables(nv, "vdot"); auto H = tree->massMatrix(kinsol); Eigen::MatrixXd H_and_neg_JT = H; VectorXd C = tree->dynamicsBiasTerm(kinsol, f_ext); if (num_actuators > 0) C -= tree->B * u.topRows(num_actuators); // loop through rigid body force elements { // todo: distinguish between AppliedForce and ConstraintForce size_t u_index = 0; for (auto const& f : force_elements) { size_t num_inputs = f->getNumInputs(); VectorXd force_input(u.middleRows(u_index, num_inputs)); C -= f->output(t, force_input, kinsol); u_index += num_inputs; } } // apply joint limit forces { for (auto const& b : tree->bodies) { if (!b->hasParent()) continue; auto const& joint = b->getJoint(); if (joint.getNumPositions() == 1 && joint.getNumVelocities() == 1) { // taking advantage of only single-axis joints having joint // limits makes things easier/faster here double qmin = joint.getJointLimitMin()(0), qmax = joint.getJointLimitMax()(0); // tau = k*(qlimit-q) - b(qdot) if (q(b->position_num_start) < qmin) C(b->velocity_num_start) -= penetration_stiffness * (qmin - q(b->position_num_start)) - penetration_damping * v(b->velocity_num_start); else if (q(b->position_num_start) > qmax) C(b->velocity_num_start) -= penetration_stiffness * (qmax - q(b->position_num_start)) - penetration_damping * v(b->velocity_num_start); } } } // apply contact forces { VectorXd phi; Matrix3Xd normal, xA, xB; vector<int> bodyA_idx, bodyB_idx; if (use_multi_contact) tree->potentialCollisions(kinsol, phi, normal, xA, xB, bodyA_idx, bodyB_idx); else tree->collisionDetect(kinsol, phi, normal, xA, xB, bodyA_idx, bodyB_idx); for (int i = 0; i < phi.rows(); i++) { if (phi(i) < 0.0) { // then i have contact // todo: move this entire block to a shared an updated "contactJacobian" // method in RigidBodyTree auto JA = tree->transformPointsJacobian(kinsol, xA.col(i), bodyA_idx[i], 0, false); auto JB = tree->transformPointsJacobian(kinsol, xB.col(i), bodyB_idx[i], 0, false); Vector3d this_normal = normal.col(i); // compute the surface tangent basis Vector3d tangent1; if (1.0 - this_normal(2) < EPSILON) { // handle the unit-normal case // (since it's unit length, just // check z) tangent1 << 1.0, 0.0, 0.0; } else if (1 + this_normal(2) < EPSILON) { tangent1 << -1.0, 0.0, 0.0; // same for the reflected case } else { // now the general case tangent1 << this_normal(1), -this_normal(0), 0.0; tangent1 /= sqrt(this_normal(1) * this_normal(1) + this_normal(0) * this_normal(0)); } Vector3d tangent2 = this_normal.cross(tangent1); Matrix3d R; // rotation into normal coordinates R.row(0) = tangent1; R.row(1) = tangent2; R.row(2) = this_normal; auto J = R * (JA - JB); // J = [ D1; D2; n ] auto relative_velocity = J * v; // [ tangent1dot; tangent2dot; phidot ] { // spring law for normal force: fA_normal = -k*phi - b*phidot // and damping for tangential force: fA_tangent = -b*tangentdot // (bounded by the friction cone) Vector3d fA; fA(2) = std::max<double>(-penetration_stiffness * phi(i) - penetration_damping * relative_velocity(2), 0.0); fA.head(2) = -std::min<double>( penetration_damping, friction_coefficient * fA(2) / (relative_velocity.head(2).norm() + EPSILON)) * relative_velocity.head(2); // epsilon to avoid divide by zero // equal and opposite: fB = -fA. // tau = (R*JA)^T fA + (R*JB)^T fB = J^T fA C -= J.transpose() * fA; } } } } if (tree->getNumPositionConstraints()) { int nc = tree->getNumPositionConstraints(); const double alpha = 5.0; // 1/time constant of position constraint // satisfaction (see my latex rigid body notes) prog.AddContinuousVariables( nc, "position constraint force"); // don't actually need to use the // decision variable reference that // would be returned... // then compute the constraint force auto phi = tree->positionConstraints(kinsol); auto J = tree->positionConstraintsJacobian(kinsol, false); auto Jdotv = tree->positionConstraintsJacDotTimesV(kinsol); // phiddot = -2 alpha phidot - alpha^2 phi (0 + critically damped // stabilization term) prog.AddLinearEqualityConstraint( J, -(Jdotv + 2 * alpha * J * v + alpha * alpha * phi), {vdot}); H_and_neg_JT.conservativeResize(NoChange, H_and_neg_JT.cols() + J.rows()); H_and_neg_JT.rightCols(J.rows()) = -J.transpose(); } // add [H,-J^T]*[vdot;f] = -C prog.AddLinearEqualityConstraint(H_and_neg_JT, -C); prog.Solve(); // prog.PrintSolution(); StateVector<double> dot(nq + nv); dot << kinsol.transformPositionDotMappingToVelocityMapping( Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Identity( nq, nq)) * v, vdot.value(); return dot; }