//____________________________________________________________________ void fitCircle(Int_t n=10000) { //generates n points around a circle and fit them TCanvas *c1 = new TCanvas("c1","c1",600,600); c1->SetGrid(); gr = new TGraph(n); if (n> 999) gr->SetMarkerStyle(1); else gr->SetMarkerStyle(3); TRandom3 r; Double_t x,y; for (Int_t i=0;i<n;i++) { r.Circle(x,y,r.Gaus(4,0.3)); gr->SetPoint(i,x,y); } c1->DrawFrame(-5,-5,5,5); gr->Draw("p"); auto chi2Function = [&](const Double_t *par) { //minimisation function computing the sum of squares of residuals // looping at the graph points Int_t np = gr->GetN(); Double_t f = 0; Double_t *x = gr->GetX(); Double_t *y = gr->GetY(); for (Int_t i=0;i<np;i++) { Double_t u = x[i] - par[0]; Double_t v = y[i] - par[1]; Double_t dr = par[2] - std::sqrt(u*u+v*v); f += dr*dr; } return f; }; // wrap chi2 funciton in a function object for the fit // 3 is the number of fit parameters (size of array par) ROOT::Math::Functor fcn(chi2Function,3); ROOT::Fit::Fitter fitter; double pStart[3] = {0,0,1}; fitter.SetFCN(fcn, pStart); fitter.Config().ParSettings(0).SetName("x0"); fitter.Config().ParSettings(1).SetName("y0"); fitter.Config().ParSettings(2).SetName("R"); // do the fit bool ok = fitter.FitFCN(); if (!ok) { Error("line3Dfit","Line3D Fit failed"); } const ROOT::Fit::FitResult & result = fitter.Result(); result.Print(std::cout); //Draw the circle on top of the points TArc *arc = new TArc(result.Parameter(0),result.Parameter(1),result.Parameter(2)); arc->SetLineColor(kRed); arc->SetLineWidth(4); arc->Draw(); }
Int_t line3Dfit() { gStyle->SetOptStat(0); gStyle->SetOptFit(); //double e = 0.1; Int_t nd = 10000; // double xmin = 0; double ymin = 0; // double xmax = 10; double ymax = 10; TGraph2D * gr = new TGraph2D(); // Fill the 2D graph double p0[4] = {10,20,1,2}; // generate graph with the 3d points for (Int_t N=0; N<nd; N++) { double x,y,z = 0; // Generate a random number double t = gRandom->Uniform(0,10); line(t,p0,x,y,z); double err = 1; // do a gaussian smearing around the points in all coordinates x += gRandom->Gaus(0,err); y += gRandom->Gaus(0,err); z += gRandom->Gaus(0,err); gr->SetPoint(N,x,y,z); //dt->SetPointError(N,0,0,err); } // fit the graph now ROOT::Fit::Fitter fitter; // make the functor objet SumDistance2 sdist(gr); #ifdef __CINT__ ROOT::Math::Functor fcn(&sdist,4,"SumDistance2"); #else ROOT::Math::Functor fcn(sdist,4); #endif // set the function and the initial parameter values double pStart[4] = {1,1,1,1}; fitter.SetFCN(fcn,pStart); // set step sizes different than default ones (0.3 times parameter values) for (int i = 0; i < 4; ++i) fitter.Config().ParSettings(i).SetStepSize(0.01); bool ok = fitter.FitFCN(); if (!ok) { Error("line3Dfit","Line3D Fit failed"); return 1; } const ROOT::Fit::FitResult & result = fitter.Result(); std::cout << "Total final distance square " << result.MinFcnValue() << std::endl; result.Print(std::cout); gr->Draw("p0"); // get fit parameters const double * parFit = result.GetParams(); // draw the fitted line int n = 1000; double t0 = 0; double dt = 10; TPolyLine3D *l = new TPolyLine3D(n); for (int i = 0; i <n;++i) { double t = t0+ dt*i/n; double x,y,z; line(t,parFit,x,y,z); l->SetPoint(i,x,y,z); } l->SetLineColor(kRed); l->Draw("same"); // draw original line TPolyLine3D *l0 = new TPolyLine3D(n); for (int i = 0; i <n;++i) { double t = t0+ dt*i/n; double x,y,z; line(t,p0,x,y,z); l0->SetPoint(i,x,y,z); } l0->SetLineColor(kBlue); l0->Draw("same"); return 0; }
void view_SMEvents_3D_from_Hits() { /*** Displays an 3D occupancy plot for each SM Event. (stop mode event) Can choose which SM event to start at. (find "CHOOSE THIS" in this script) Input file must be a Hits file (_interpreted_Hits.root file). ***/ gROOT->Reset(); // Setting up file, treereader, histogram TFile *f = new TFile("/home/pixel/pybar/tags/2.0.2_new/pyBAR-master/pybar/module_202_new/101_module_202_new_stop_mode_ext_trigger_scan_interpreted_Hits.root"); if (!f) { // if we cannot open the file, print an error message and return immediately cout << "Error: cannot open the root file!\n"; //return; } TTreeReader *reader = new TTreeReader("Table", f); TTreeReaderValue<UInt_t> h5_file_num(*reader, "h5_file_num"); TTreeReaderValue<Long64_t> event_number(*reader, "event_number"); TTreeReaderValue<UChar_t> tot(*reader, "tot"); TTreeReaderValue<UChar_t> relative_BCID(*reader, "relative_BCID"); TTreeReaderValue<Long64_t> SM_event_num(*reader, "SM_event_num"); TTreeReaderValue<Double_t> x(*reader, "x"); TTreeReaderValue<Double_t> y(*reader, "y"); TTreeReaderValue<Double_t> z(*reader, "z"); // Initialize the canvas and graph TCanvas *c1 = new TCanvas("c1","3D Occupancy for Specified SM Event", 1000, 10, 900, 550); c1->SetRightMargin(0.25); TGraph2D *graph = new TGraph2D(); // Variables used to loop the main loop bool endOfReader = false; // if reached end of the reader bool quit = false; // if pressed q int smEventNum = 1; // the current SM-event CHOOSE THIS to start at desired SM event number // Main Loop (loops for every smEventNum) while (!endOfReader && !quit) { // Variables used in this main loop int startEntryNum = 0; int endEntryNum = 0; string histTitle = "3D Occupancy for SM Event "; string inString = ""; bool fitFailed = false; // true if the 3D fit failed bool lastEvent = false; // Declaring some important output values for the current graph and/or line fit int numEntries = 0; double sumSquares = 0; // Get startEntryNum and endEntryNum startEntryNum = getEntryNumWithSMEventNum(reader, smEventNum); endEntryNum = getEntryNumWithSMEventNum(reader, smEventNum + 1); if (startEntryNum == -2) { // can't find the smEventNum cout << "Error: There should not be any SM event numbers that are missing." << "\n"; } else if (startEntryNum == -3) { endOfReader = true; break; } else if (endEntryNum == -3) { // assuming no SM event nums are skipped endEntryNum = reader->GetEntries(false); lastEvent = true; } // Fill TGraph with points and set title and axes graph = new TGraph2D(); // create a new TGraph to refresh reader->SetEntry(startEntryNum); for (int i = 0; i < endEntryNum - startEntryNum; i++) { graph->SetPoint(i, (*x - 0.001), (*y + 0.001), (*z - 0.001)); endOfReader = !(reader->Next()); } histTitle.append(to_string(smEventNum)); graph->SetTitle(histTitle.c_str()); graph->GetXaxis()->SetTitle("x (mm)"); graph->GetYaxis()->SetTitle("y (mm)"); graph->GetZaxis()->SetTitle("z (mm)"); graph->GetXaxis()->SetLimits(0, 20); // ROOT is buggy, x and y use setlimits() graph->GetYaxis()->SetLimits(-16.8, 0); // but z uses setrangeuser() graph->GetZaxis()->SetRangeUser(0, 40.96); c1->SetTitle(histTitle.c_str()); // 3D Fit, display results, draw graph and line fit, only accept "good" events, get input if (!endOfReader || lastEvent) { // Display some results numEntries = graph->GetN(); cout << "Current SM Event Number: " << smEventNum << "\n"; cout << "Number of entries: " << numEntries << "\n"; // Starting the fit. First, get decent starting parameters for the fit - do two 2D fits (one for x vs z, one for y vs z) TGraph *graphZX = new TGraph(); TGraph *graphZY = new TGraph(); reader->SetEntry(startEntryNum); for (int i = 0; i < endEntryNum - startEntryNum; i++) { graphZX->SetPoint(i, (*z - 0.001), (*x + 0.001)); graphZY->SetPoint(i, (*z - 0.001), (*y + 0.001)); reader->Next(); } TFitResultPtr fitZX = graphZX->Fit("pol1", "WQS"); // w for ignore error of each pt, q for quiet (suppress results output), s for return a tfitresultptr TFitResultPtr fitZY = graphZY->Fit("pol1", "WQS"); Double_t param0 = fitZX->GetParams()[0]; Double_t param1 = fitZX->GetParams()[1]; Double_t param2 = fitZY->GetParams()[0]; Double_t param3 = fitZY->GetParams()[1]; // // Draw the lines for the two 2D fits // int n = 2; // TPolyLine3D *lineZX = new TPolyLine3D(n); // TPolyLine3D *lineZY = new TPolyLine3D(n); // lineZX->SetPoint(0, param0, 0, 0); // lineZX->SetPoint(1, param0 + param1 * 40.96, 0, 40.96); // lineZX->SetLineColor(kBlue); // lineZX->Draw("same"); // lineZY->SetPoint(0, 0, param2, 0); // lineZY->SetPoint(1, 0, param2 + param3 * 40.96, 40.96); // lineZY->SetLineColor(kGreen); // lineZY->Draw("same"); // 3D FITTING CODE (based on line3Dfit.C), draw graph and line fit ROOT::Fit::Fitter fitter; SumDistance2 sdist(graph); #ifdef __CINT__ ROOT::Math::Functor fcn(&sdist,4,"SumDistance2"); #else ROOT::Math::Functor fcn(sdist,4); #endif // set the function and the initial parameter values double pStart[4] = {param0,param1,param2,param3}; fitter.SetFCN(fcn,pStart); // set step sizes different than default ones (0.3 times parameter values) for (int i = 0; i < 4; ++i) fitter.Config().ParSettings(i).SetStepSize(0.01); bool ok = fitter.FitFCN(); if (!ok) { Error("line3Dfit","Line3D Fit failed"); fitFailed = true; } else { const ROOT::Fit::FitResult & result = fitter.Result(); const double * fitParams = result.GetParams(); sumSquares = result.MinFcnValue(); std::cout << "Sum of distance squares: " << sumSquares << std::endl; std::cout << "Sum of distance squares divided by numEntries: " << sumSquares/numEntries << std::endl; std::cout << "Theta : " << TMath::ATan(sqrt(pow(fitParams[1], 2) + pow(fitParams[3], 2))) << std::endl; // result.Print(std::cout); // (un)suppress results output // Draw the graph graph->SetMarkerStyle(8); graph->SetMarkerSize(0.5); graph->Draw("pcol"); // Draw the fitted line int n = 1000; double t0 = 0; // t is the z coordinate double dt = 40.96; TPolyLine3D *l = new TPolyLine3D(n); for (int i = 0; i <n;++i) { double t = t0+ dt*i/n; double x,y,z; line(t,fitParams,x,y,z); l->SetPoint(i,x,y,z); } l->SetLineColor(kRed); l->Draw("same"); // Access fit params and minfcnvalue // cout << "FIT1: " << fitParams[1] << "\n"; // cout << "FIT2: " << result.MinFcnValue() << "\n"; } // Criteria to be a good event (if not good entry, then don't show) bool isGoodEvent = false; // the following block of code finds the mean X, Y ans Z values double meanX = 0; double meanY = 0; double meanZ = 0; reader->SetEntry(startEntryNum); for (int i = 0; i < endEntryNum - startEntryNum; i++) { meanX += graph->GetX()[i]; meanY += graph->GetY()[i]; meanZ += graph->GetZ()[i]; reader->Next(); } meanX /= endEntryNum - startEntryNum; meanY /= endEntryNum - startEntryNum; meanZ /= endEntryNum - startEntryNum; // the following code block calculates the fraction of the hits in the smEvent that are inside a sphere, centered at the mean XYZ, of radius 'radius' (larger fraction means the track is less like a long streak and more like a dense blob) double radius = 1; // length in mm double fractionInsideSphere = 0; reader->SetEntry(startEntryNum); for (int i = 0; i < endEntryNum - startEntryNum; i++) { double distanceFromMeanXYZ = sqrt(pow(graph->GetX()[i] - meanX, 2) + pow(graph->GetY()[i] - meanY, 2) + pow(graph->GetZ()[i] - meanZ, 2)); if (distanceFromMeanXYZ <= 2) { fractionInsideSphere += 1; } reader->Next(); } fractionInsideSphere /= endEntryNum - startEntryNum; cout << "fraction inside sphere: " << fractionInsideSphere << "\n"; // if (numEntries >= 50 // && sumSquares/numEntries < 2.0 // && fractionInsideSphere < 0.8) { // isGoodEvent = true; // } isGoodEvent = true; if (isGoodEvent) { // won't show drawings or ask for input unless its a good event c1->Update(); // show all the drawings // handle input bool inStringValid = false; do { cout << "<Enter>: next event; 'b': previous SM event; [number]: specific SM event number; 'q': quit.\n"; getline(cin, inString); // Handles behavior according to input if (inString.empty()) { // <Enter> // leave things be inStringValid = true; } else if (inString.compare("b") == 0) { smEventNum -= 2; // because it gets incremented once at the end of this do while loop inStringValid = true; } else if (inString.compare("q") == 0 || inString.compare(".q") == 0) { quit = true; inStringValid = true; } else if (canConvertStringToPosInt(inString)) { smEventNum = convertStringToPosInt(inString) - 1; // -1 because it gets incremented once at the end of this do while loop inStringValid = true; } // else, leave inStringValid as false, so that it asks for input again } while (!inStringValid); } else { cout << "\n"; } } smEventNum++; } cout << "Exiting program.\n"; }
Int_t line3dfit_copy() { gStyle->SetOptStat(0); gStyle->SetOptFit(); //double e = 0.1; // Int_t nd = 5; // double xmin = 0; double ymin = 0; // double xmax = 10; double ymax = 10; TGraph2D * gr = new TGraph2D(); // Fill the 2D graph // double p0[4] = {10,20,1,2}; // generate graph with the 3d points // for (Int_t N=0; N<nd; N++) { // double x,y,z = 0; // // Generate a random number // double t = gRandom->Uniform(0,10); // line(t,p0,x,y,z); // double err = 1; // // do a gaussian smearing around the points in all coordinates // x += gRandom->Gaus(0,err); // y += gRandom->Gaus(0,err); // z += gRandom->Gaus(0,err); // gr->SetPoint(N,x,y,z); // //dt->SetPointError(N,0,0,err); // } // gr->SetPoint(0, 3, 3, 5); // gr->SetPoint(1, 3, 3, 3); // gr->SetPoint(2, 4, 3.5, 5); // gr->SetPoint(3, 6.2, 7.3, 5.8); // gr->SetPoint(4, 9, 8, 7); // gr->SetPoint(5, 5, 5, 5); gr->SetPoint(0, 19, -4.25, 1.92); gr->SetPoint(1, 19, -4.30, 1.92); gr->SetPoint(2, 19, -4.35, 1.92); gr->SetPoint(3, 19, -4.40, 1.92); gr->SetPoint(4, 19, -4.45, 1.92); gr->SetPoint(5, 19, -4.50, 1.92); gr->SetPoint(6, 19, -4.55, 1.92); gr->SetPoint(7, 19, -4.60, 1.92); gr->SetPoint(8, 18.75, -4.30, 1.92); gr->SetPoint(9, 18.75, -4.35, 1.92); gr->SetPoint(10, 18.75, -4.40, 1.92); gr->SetPoint(11, 18.75, -4.45, 1.92); gr->SetPoint(12, 18.75, -4.50, 1.92); gr->SetPoint(13, 18.75, -4.55, 1.92); gr->SetPoint(14, 19, -4.20, 2.08); gr->SetPoint(15, 19, -4.65, 2.08); gr->SetPoint(16, 19, -4.70, 2.08); gr->SetPoint(17, 18.75, -4.25, 2.08); gr->SetPoint(18, 18.75, -4.60, 2.08); // gr->SetPoint(19, 19.001, -4.151, 2.241); // gr->SetPoint(20, 18.751, -4.201, 2.241); gr->SetPoint(19, 19., -4.15, 2.24); gr->SetPoint(20, 18.5723, -4.20, 2.24); // gr->SetMarkerStyle(8); // gr->Draw("p"); // gr->Draw("p0"); // TFitResultPtr fit = gr->Fit("pol1", "WS"); // // fit->Print("V"); // Double_t p0 = fit->Value(0); // Double_t p1 = fit->Value(1); // // draw the line // TPolyLine3D *l = new TPolyLine3D(2); // double dz = 8; // l->SetPoint(0,0,0,p0); // l->SetPoint(1,dz,0,dz * p1); // l->SetLineColor(kRed); // l->Draw("same"); // fit the graph now, and make the functor objet ROOT::Fit::Fitter fitter; SumDistance2 sdist(gr); #ifdef __CINT__ ROOT::Math::Functor fcn(&sdist,4,"SumDistance2"); #else ROOT::Math::Functor fcn(sdist,4); #endif // set the function and the initial parameter values double pStart[4] = {1,1,1,1}; fitter.SetFCN(fcn,pStart); // set step sizes different than default ones (0.3 times parameter values) for (int i = 0; i < 4; ++i) fitter.Config().ParSettings(i).SetStepSize(0.01); bool ok = fitter.FitFCN(); if (!ok) { Error("line3Dfit","Line3D Fit failed"); return 1; } const ROOT::Fit::FitResult & result = fitter.Result(); std::cout << "Total final distance square " << result.MinFcnValue() << std::endl; // result.Print(std::cout); // @@@ suppress output // get fit parameters const double * parFit = result.GetParams(); // draw the fitted line int n = 1000; double t0 = 0; double dt = 10; TPolyLine3D *l = new TPolyLine3D(n); for (int i = 0; i <n;++i) { double t = t0+ dt*i/n; double x,y,z; line(t,parFit,x,y,z); l->SetPoint(i,x,y,z); } l->SetLineColor(kRed); l->Draw("same"); // Access to fit params and minfcnvalue cout << parFit[1] << "\n"; cout << result.MinFcnValue() << "\n"; // // draw original line // TPolyLine3D *l0 = new TPolyLine3D(n); // for (int i = 0; i <n;++i) { // double t = t0+ dt*i/n; // double x,y,z; // line(t,p0,x,y,z); // l0->SetPoint(i,x,y,z); // } // l0->SetLineColor(kBlue); // l0->Draw("same"); return 0; }