bool SystemZDAGToDAGISel::SelectAddrRI12(SDNode *Op, SDValue& Addr, SDValue &Base, SDValue &Disp, bool is12BitOnly) { SystemZRRIAddressMode AM20(/*isRI*/true), AM12(/*isRI*/true); bool Done = false; if (!Addr.hasOneUse()) { unsigned Opcode = Addr.getOpcode(); if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) { // If we are able to fold N into addressing mode, then we'll allow it even // if N has multiple uses. In general, addressing computation is used as // addresses by all of its uses. But watch out for CopyToReg uses, that // means the address computation is liveout. It will be computed by a LA // so we want to avoid computing the address twice. for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = Addr.getNode()->use_end(); UI != UE; ++UI) { if (UI->getOpcode() == ISD::CopyToReg) { MatchAddressBase(Addr, AM12); Done = true; break; } } } } if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true)) return false; // Check, whether we can match stuff using 20-bit displacements if (!Done && !is12BitOnly && !MatchAddress(Addr, AM20, /* is12Bit */ false)) if (AM12.Disp == 0 && AM20.Disp != 0) return false; DEBUG(errs() << "MatchAddress (final): "; AM12.dump()); EVT VT = Addr.getValueType(); if (AM12.BaseType == SystemZRRIAddressMode::RegBase) { if (!AM12.Base.Reg.getNode()) AM12.Base.Reg = CurDAG->getRegister(0, VT); } assert(AM12.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!"); getAddressOperandsRI(AM12, Base, Disp); return true; }
/// Returns true if the address can be represented by a base register plus /// index register plus a signed 20-bit displacement [base + idx + imm]. bool SystemZDAGToDAGISel::SelectAddrRRI20(SDNode *Op, SDValue Addr, SDValue &Base, SDValue &Disp, SDValue &Index) { SystemZRRIAddressMode AM; bool Done = false; if (!Addr.hasOneUse()) { unsigned Opcode = Addr.getOpcode(); if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) { // If we are able to fold N into addressing mode, then we'll allow it even // if N has multiple uses. In general, addressing computation is used as // addresses by all of its uses. But watch out for CopyToReg uses, that // means the address computation is liveout. It will be computed by a LA // so we want to avoid computing the address twice. for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = Addr.getNode()->use_end(); UI != UE; ++UI) { if (UI->getOpcode() == ISD::CopyToReg) { MatchAddressBase(Addr, AM); Done = true; break; } } } } if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false)) return false; DEBUG(errs() << "MatchAddress (final): "; AM.dump()); EVT VT = Addr.getValueType(); if (AM.BaseType == SystemZRRIAddressMode::RegBase) { if (!AM.Base.Reg.getNode()) AM.Base.Reg = CurDAG->getRegister(0, VT); } if (!AM.IndexReg.getNode()) AM.IndexReg = CurDAG->getRegister(0, VT); getAddressOperands(AM, Base, Disp, Index); return true; }
// After instruction selection, insert COPY_TO_REGCLASS nodes to help in // choosing the proper register classes. void BlackfinDAGToDAGISel::FixRegisterClasses(SelectionDAG &DAG) { const BlackfinInstrInfo &TII = getInstrInfo(); const BlackfinRegisterInfo *TRI = getRegisterInfo(); DAG.AssignTopologicalOrder(); HandleSDNode Dummy(DAG.getRoot()); for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(); NI != DAG.allnodes_end(); ++NI) { if (NI->use_empty() || !NI->isMachineOpcode()) continue; const TargetInstrDesc &DefTID = TII.get(NI->getMachineOpcode()); for (SDNode::use_iterator UI = NI->use_begin(); !UI.atEnd(); ++UI) { if (!UI->isMachineOpcode()) continue; if (UI.getUse().getResNo() >= DefTID.getNumDefs()) continue; const TargetRegisterClass *DefRC = DefTID.OpInfo[UI.getUse().getResNo()].getRegClass(TRI); const TargetInstrDesc &UseTID = TII.get(UI->getMachineOpcode()); if (UseTID.getNumDefs()+UI.getOperandNo() >= UseTID.getNumOperands()) continue; const TargetRegisterClass *UseRC = UseTID.OpInfo[UseTID.getNumDefs()+UI.getOperandNo()].getRegClass(TRI); if (!DefRC || !UseRC) continue; // We cannot copy CC <-> !(CC/D) if ((isCC(DefRC) && !isDCC(UseRC)) || (isCC(UseRC) && !isDCC(DefRC))) { SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, NI->getDebugLoc(), MVT::i32, UI.getUse().get(), DAG.getTargetConstant(BF::DRegClassID, MVT::i32)); UpdateNodeOperand(DAG, *UI, UI.getOperandNo(), SDValue(Copy, 0)); } } } DAG.setRoot(Dummy.getValue()); }
/// Do extensive, expensive, sanity checking. void DAGTypeLegalizer::PerformExpensiveChecks() { // If a node is not processed, then none of its values should be mapped by any // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues. // If a node is processed, then each value with an illegal type must be mapped // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues. // Values with a legal type may be mapped by ReplacedValues, but not by any of // the other maps. // Note that these invariants may not hold momentarily when processing a node: // the node being processed may be put in a map before being marked Processed. // Note that it is possible to have nodes marked NewNode in the DAG. This can // occur in two ways. Firstly, a node may be created during legalization but // never passed to the legalization core. This is usually due to the implicit // folding that occurs when using the DAG.getNode operators. Secondly, a new // node may be passed to the legalization core, but when analyzed may morph // into a different node, leaving the original node as a NewNode in the DAG. // A node may morph if one of its operands changes during analysis. Whether // it actually morphs or not depends on whether, after updating its operands, // it is equivalent to an existing node: if so, it morphs into that existing // node (CSE). An operand can change during analysis if the operand is a new // node that morphs, or it is a processed value that was mapped to some other // value (as recorded in ReplacedValues) in which case the operand is turned // into that other value. If a node morphs then the node it morphed into will // be used instead of it for legalization, however the original node continues // to live on in the DAG. // The conclusion is that though there may be nodes marked NewNode in the DAG, // all uses of such nodes are also marked NewNode: the result is a fungus of // NewNodes growing on top of the useful nodes, and perhaps using them, but // not used by them. // If a value is mapped by ReplacedValues, then it must have no uses, except // by nodes marked NewNode (see above). // The final node obtained by mapping by ReplacedValues is not marked NewNode. // Note that ReplacedValues should be applied iteratively. // Note that the ReplacedValues map may also map deleted nodes (by iterating // over the DAG we never dereference deleted nodes). This means that it may // also map nodes marked NewNode if the deallocated memory was reallocated as // another node, and that new node was not seen by the LegalizeTypes machinery // (for example because it was created but not used). In general, we cannot // distinguish between new nodes and deleted nodes. SmallVector<SDNode*, 16> NewNodes; for (SDNode &Node : DAG.allnodes()) { // Remember nodes marked NewNode - they are subject to extra checking below. if (Node.getNodeId() == NewNode) NewNodes.push_back(&Node); for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) { SDValue Res(&Node, i); EVT VT = Res.getValueType(); bool Failed = false; unsigned Mapped = 0; if (ReplacedValues.find(Res) != ReplacedValues.end()) { Mapped |= 1; // Check that remapped values are only used by nodes marked NewNode. for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end(); UI != UE; ++UI) if (UI.getUse().getResNo() == i) assert(UI->getNodeId() == NewNode && "Remapped value has non-trivial use!"); // Check that the final result of applying ReplacedValues is not // marked NewNode. SDValue NewVal = ReplacedValues[Res]; DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal); while (I != ReplacedValues.end()) { NewVal = I->second; I = ReplacedValues.find(NewVal); } assert(NewVal.getNode()->getNodeId() != NewNode && "ReplacedValues maps to a new node!"); } if (PromotedIntegers.find(Res) != PromotedIntegers.end()) Mapped |= 2; if (SoftenedFloats.find(Res) != SoftenedFloats.end()) Mapped |= 4; if (ScalarizedVectors.find(Res) != ScalarizedVectors.end()) Mapped |= 8; if (ExpandedIntegers.find(Res) != ExpandedIntegers.end()) Mapped |= 16; if (ExpandedFloats.find(Res) != ExpandedFloats.end()) Mapped |= 32; if (SplitVectors.find(Res) != SplitVectors.end()) Mapped |= 64; if (WidenedVectors.find(Res) != WidenedVectors.end()) Mapped |= 128; if (PromotedFloats.find(Res) != PromotedFloats.end()) Mapped |= 256; if (Node.getNodeId() != Processed) { // Since we allow ReplacedValues to map deleted nodes, it may map nodes // marked NewNode too, since a deleted node may have been reallocated as // another node that has not been seen by the LegalizeTypes machinery. if ((Node.getNodeId() == NewNode && Mapped > 1) || (Node.getNodeId() != NewNode && Mapped != 0)) { dbgs() << "Unprocessed value in a map!"; Failed = true; } } else if (isTypeLegal(VT) || IgnoreNodeResults(&Node)) { if (Mapped > 1) { dbgs() << "Value with legal type was transformed!"; Failed = true; } } else { // If the value can be kept in HW registers, softening machinery can // leave it unchanged and don't put it to any map. if (Mapped == 0 && !(getTypeAction(VT) == TargetLowering::TypeSoftenFloat && isLegalInHWReg(VT))) { dbgs() << "Processed value not in any map!"; Failed = true; } else if (Mapped & (Mapped - 1)) { dbgs() << "Value in multiple maps!"; Failed = true; } } if (Failed) { if (Mapped & 1) dbgs() << " ReplacedValues"; if (Mapped & 2) dbgs() << " PromotedIntegers"; if (Mapped & 4) dbgs() << " SoftenedFloats"; if (Mapped & 8) dbgs() << " ScalarizedVectors"; if (Mapped & 16) dbgs() << " ExpandedIntegers"; if (Mapped & 32) dbgs() << " ExpandedFloats"; if (Mapped & 64) dbgs() << " SplitVectors"; if (Mapped & 128) dbgs() << " WidenedVectors"; if (Mapped & 256) dbgs() << " PromotedFloats"; dbgs() << "\n"; llvm_unreachable(nullptr); } } } // Checked that NewNodes are only used by other NewNodes. for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) { SDNode *N = NewNodes[i]; for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!"); } }
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { N->setNodeId(-1); return NULL; // Already selected. } switch (Opc) { default: break; // We are selecting i64 ADD here instead of custom lower it during // DAG legalization, so we can fold some i64 ADDs used for address // calculation into the LOAD and STORE instructions. case ISD::ADD: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (N->getValueType(0) != MVT::i64 || ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS) break; SDLoc DL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32); SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32); SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, LHS, Sub0); SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, LHS, Sub1); SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, RHS, Sub0); SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, RHS, Sub1); SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); SmallVector<SDValue, 8> AddLoArgs; AddLoArgs.push_back(SDValue(Lo0, 0)); AddLoArgs.push_back(SDValue(Lo1, 0)); SDNode *AddLo = CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, VTList, AddLoArgs); SDValue Carry = SDValue(AddLo, 1); SDNode *AddHi = CurDAG->getMachineNode(AMDGPU::S_ADDC_U32, DL, MVT::i32, SDValue(Hi0, 0), SDValue(Hi1, 0), Carry); SDValue Args[5] = { CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32), SDValue(AddLo,0), Sub0, SDValue(AddHi,0), Sub1, }; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, MVT::i64, Args, 5); } case ISD::BUILD_VECTOR: { unsigned RegClassID; const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); const AMDGPURegisterInfo *TRI = static_cast<const AMDGPURegisterInfo*>(TM.getRegisterInfo()); const SIRegisterInfo *SIRI = static_cast<const SIRegisterInfo*>(TM.getRegisterInfo()); EVT VT = N->getValueType(0); unsigned NumVectorElts = VT.getVectorNumElements(); assert(VT.getVectorElementType().bitsEq(MVT::i32)); if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { bool UseVReg = true; for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); U != E; ++U) { if (!U->isMachineOpcode()) { continue; } const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); if (!RC) { continue; } if (SIRI->isSGPRClass(RC)) { UseVReg = false; } } switch(NumVectorElts) { case 1: RegClassID = UseVReg ? AMDGPU::VReg_32RegClassID : AMDGPU::SReg_32RegClassID; break; case 2: RegClassID = UseVReg ? AMDGPU::VReg_64RegClassID : AMDGPU::SReg_64RegClassID; break; case 4: RegClassID = UseVReg ? AMDGPU::VReg_128RegClassID : AMDGPU::SReg_128RegClassID; break; case 8: RegClassID = UseVReg ? AMDGPU::VReg_256RegClassID : AMDGPU::SReg_256RegClassID; break; case 16: RegClassID = UseVReg ? AMDGPU::VReg_512RegClassID : AMDGPU::SReg_512RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } else { // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. switch(NumVectorElts) { case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break; case 4: RegClassID = AMDGPU::R600_Reg128RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } SDValue RegClass = CurDAG->getTargetConstant(RegClassID, MVT::i32); if (NumVectorElts == 1) { return CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, VT.getVectorElementType(), N->getOperand(0), RegClass); } assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not " "supported yet"); // 16 = Max Num Vector Elements // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) // 1 = Vector Register Class SDValue RegSeqArgs[16 * 2 + 1]; RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, MVT::i32); bool IsRegSeq = true; for (unsigned i = 0; i < N->getNumOperands(); i++) { // XXX: Why is this here? if (dyn_cast<RegisterSDNode>(N->getOperand(i))) { IsRegSeq = false; break; } RegSeqArgs[1 + (2 * i)] = N->getOperand(i); RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), MVT::i32); } if (!IsRegSeq) break; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs, 2 * N->getNumOperands() + 1); } case ISD::BUILD_PAIR: { SDValue RC, SubReg0, SubReg1; const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } if (N->getValueType(0) == MVT::i128) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32); } else if (N->getValueType(0) == MVT::i64) { RC = CurDAG->getTargetConstant(AMDGPU::VSrc_64RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32); } else { llvm_unreachable("Unhandled value type for BUILD_PAIR"); } const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, N->getOperand(1), SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SDLoc(N), N->getValueType(0), Ops); } case AMDGPUISD::REGISTER_LOAD: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) break; SDValue Addr, Offset; SelectADDRIndirect(N->getOperand(1), Addr, Offset); const SDValue Ops[] = { Addr, Offset, CurDAG->getTargetConstant(0, MVT::i32), N->getOperand(0), }; return CurDAG->getMachineNode(AMDGPU::SI_RegisterLoad, SDLoc(N), CurDAG->getVTList(MVT::i32, MVT::i64, MVT::Other), Ops); } case AMDGPUISD::REGISTER_STORE: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) break; SDValue Addr, Offset; SelectADDRIndirect(N->getOperand(2), Addr, Offset); const SDValue Ops[] = { N->getOperand(1), Addr, Offset, CurDAG->getTargetConstant(0, MVT::i32), N->getOperand(0), }; return CurDAG->getMachineNode(AMDGPU::SI_RegisterStorePseudo, SDLoc(N), CurDAG->getVTList(MVT::Other), Ops); } } return SelectCode(N); }
// Note: branch conditions, by definition, only have a chain user. // This is why it should not be saved in a map for recall. Value* ARMIREmitter::visitBRCOND(const SDNode *N) { // Get the address const ConstantSDNode *DestNode = dyn_cast<ConstantSDNode>(N->getOperand(0)); if (!DestNode) { printError("visitBRCOND: Not a constant integer for branch!"); return NULL; } uint64_t DestInt = DestNode->getSExtValue(); uint64_t PC = Dec->getDisassembler()->getDebugOffset(N->getDebugLoc()); // Note: pipeline is 8 bytes uint64_t Tgt = PC + 8 + DestInt; Function *F = IRB->GetInsertBlock()->getParent(); BasicBlock *CurBB = IRB->GetInsertBlock(); BasicBlock *BBTgt = Dec->getOrCreateBasicBlock(Tgt, F); // Parse the branch condition code const ConstantSDNode *CCNode = dyn_cast<ConstantSDNode>(N->getOperand(1)); if (!CCNode) { printError("visitBRCOND: Condition code is not a constant integer!"); return NULL; } ARMCC::CondCodes ARMcc = ARMCC::CondCodes(CCNode->getZExtValue()); // Unconditional branch if (ARMcc == ARMCC::AL) { Instruction *Br = IRB->CreateBr(BBTgt); Br->setDebugLoc(N->getDebugLoc()); return Br; } // If not a conditional branch, find the successor block and look at CC BasicBlock *NextBB = NULL; Function::iterator BI = F->begin(), BE= F->end(); while (BI != BE && BI->getName() != CurBB->getName()) ++BI; ++BI; if (BI == BE) { // NOTE: This should never happen... NextBB = Dec->getOrCreateBasicBlock("end", F); } else { NextBB = &(*BI); } SDNode *CPSR = N->getOperand(2)->getOperand(1).getNode(); SDNode *CMPNode = NULL; for (SDNode::use_iterator I = CPSR->use_begin(), E = CPSR->use_end(); I != E; ++I) { if (I->getOpcode() == ISD::CopyToReg) { CMPNode = I->getOperand(2).getNode(); } } if (CMPNode == NULL) { errs() << "ARMIREmitter ERROR: Could not find CMP SDNode for ARMBRCond!\n"; return NULL; } Value *Cmp = NULL; Value *LHS = visit(CMPNode->getOperand(0).getNode()); Value *RHS = visit(CMPNode->getOperand(1).getNode()); // See ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC); in ARMISelLowering.cpp // TODO: Add support for conditions that handle floating point switch(ARMcc) { default: printError("Unknown condition code"); return NULL; case ARMCC::EQ: Cmp = IRB->CreateICmpEQ(LHS, RHS); break; case ARMCC::NE: Cmp = IRB->CreateICmpNE(LHS, RHS); break; case ARMCC::HS: // HS - unsigned higher or same (or carry set) Cmp = IRB->CreateICmpUGE(LHS, RHS); break; case ARMCC::LO: // LO - unsigned lower (or carry clear) Cmp = IRB->CreateICmpULT(LHS, RHS); break; case ARMCC::MI: // MI - minus (negative) printError("Condition code MI is not handled at this time!"); return NULL; // break; case ARMCC::PL: // PL - plus (positive or zero) printError("Condition code PL is not handled at this time!"); return NULL; // break; case ARMCC::VS: // VS - V Set (signed overflow) printError("Condition code VS is not handled at this time!"); return NULL; // break; case ARMCC::VC: // VC - V clear (no signed overflow) printError("Condition code VC is not handled at this time!"); return NULL; // break; case ARMCC::HI: // HI - unsigned higher Cmp = IRB->CreateICmpUGT(LHS, RHS); break; case ARMCC::LS: // LS - unsigned lower or same Cmp = IRB->CreateICmpULE(LHS, RHS); break; case ARMCC::GE: // GE - signed greater or equal Cmp = IRB->CreateICmpSGE(LHS, RHS); break; case ARMCC::LT: // LT - signed less than Cmp = IRB->CreateICmpSLT(LHS, RHS); break; case ARMCC::GT: // GT - signed greater than Cmp = IRB->CreateICmpSGT(LHS, RHS); break; case ARMCC::LE: // LE - signed less than or equal Cmp = IRB->CreateICmpSLE(LHS, RHS); break; } (dyn_cast<Instruction>(Cmp))->setDebugLoc(N->getOperand(2)->getDebugLoc()); // Conditional branch Instruction *Br = IRB->CreateCondBr(Cmp, BBTgt, NextBB); Br->setDebugLoc(N->getDebugLoc()); return Br; }
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(TM.getInstrInfo()); unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { return NULL; // Already selected. } switch (Opc) { default: break; case AMDGPUISD::CONST_ADDRESS: { for (SDNode::use_iterator I = N->use_begin(), Next = llvm::next(I); I != SDNode::use_end(); I = Next) { Next = llvm::next(I); if (!I->isMachineOpcode()) { continue; } unsigned Opcode = I->getMachineOpcode(); bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1; int SrcIdx = I.getOperandNo(); int SelIdx; // Unlike MachineInstrs, SDNodes do not have results in their operand // list, so we need to increment the SrcIdx, since // R600InstrInfo::getOperandIdx is based on the MachineInstr indices. if (HasDst) { SrcIdx++; } SelIdx = TII->getSelIdx(I->getMachineOpcode(), SrcIdx); if (SelIdx < 0) { continue; } SDValue CstOffset; if (N->getValueType(0).isVector() || !SelectGlobalValueConstantOffset(N->getOperand(0), CstOffset)) continue; // Gather constants values int SrcIndices[] = { TII->getOperandIdx(Opcode, AMDGPU::OpName::src0), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1), TII->getOperandIdx(Opcode, AMDGPU::OpName::src2), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W) }; std::vector<unsigned> Consts; for (unsigned i = 0; i < sizeof(SrcIndices) / sizeof(int); i++) { int OtherSrcIdx = SrcIndices[i]; int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx); if (OtherSrcIdx < 0 || OtherSelIdx < 0) { continue; } if (HasDst) { OtherSrcIdx--; OtherSelIdx--; } if (RegisterSDNode *Reg = dyn_cast<RegisterSDNode>(I->getOperand(OtherSrcIdx))) { if (Reg->getReg() == AMDGPU::ALU_CONST) { ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(I->getOperand(OtherSelIdx)); Consts.push_back(Cst->getZExtValue()); } } } ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(CstOffset); Consts.push_back(Cst->getZExtValue()); if (!TII->fitsConstReadLimitations(Consts)) continue; // Convert back to SDNode indices if (HasDst) { SrcIdx--; SelIdx--; } std::vector<SDValue> Ops; for (int i = 0, e = I->getNumOperands(); i != e; ++i) { if (i == SrcIdx) { Ops.push_back(CurDAG->getRegister(AMDGPU::ALU_CONST, MVT::f32)); } else if (i == SelIdx) { Ops.push_back(CstOffset); } else { Ops.push_back(I->getOperand(i)); } } CurDAG->UpdateNodeOperands(*I, Ops.data(), Ops.size()); } break; } case ISD::BUILD_VECTOR: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } unsigned RegClassID; switch(N->getValueType(0).getVectorNumElements()) { case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break; case 4: RegClassID = AMDGPU::R600_Reg128RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } // BUILD_VECTOR is usually lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. SDValue RegSeqArgs[9] = { CurDAG->getTargetConstant(RegClassID, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub2, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub3, MVT::i32) }; bool IsRegSeq = true; for (unsigned i = 0; i < N->getNumOperands(); i++) { if (dyn_cast<RegisterSDNode>(N->getOperand(i))) { IsRegSeq = false; break; } RegSeqArgs[2 * i + 1] = N->getOperand(i); } if (!IsRegSeq) break; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs, 2 * N->getNumOperands() + 1); } case ISD::BUILD_PAIR: { SDValue RC, SubReg0, SubReg1; const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } if (N->getValueType(0) == MVT::i128) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32); } else if (N->getValueType(0) == MVT::i64) { RC = CurDAG->getTargetConstant(AMDGPU::VSrc_64RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32); } else { llvm_unreachable("Unhandled value type for BUILD_PAIR"); } const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, N->getOperand(1), SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SDLoc(N), N->getValueType(0), Ops); } case ISD::ConstantFP: case ISD::Constant: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); // XXX: Custom immediate lowering not implemented yet. Instead we use // pseudo instructions defined in SIInstructions.td if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } uint64_t ImmValue = 0; unsigned ImmReg = AMDGPU::ALU_LITERAL_X; if (N->getOpcode() == ISD::ConstantFP) { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::f64); ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N); APFloat Value = C->getValueAPF(); float FloatValue = Value.convertToFloat(); if (FloatValue == 0.0) { ImmReg = AMDGPU::ZERO; } else if (FloatValue == 0.5) { ImmReg = AMDGPU::HALF; } else if (FloatValue == 1.0) { ImmReg = AMDGPU::ONE; } else { ImmValue = Value.bitcastToAPInt().getZExtValue(); } } else { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::i64); ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); if (C->getZExtValue() == 0) { ImmReg = AMDGPU::ZERO; } else if (C->getZExtValue() == 1) { ImmReg = AMDGPU::ONE_INT; } else { ImmValue = C->getZExtValue(); } } for (SDNode::use_iterator Use = N->use_begin(), Next = llvm::next(Use); Use != SDNode::use_end(); Use = Next) { Next = llvm::next(Use); std::vector<SDValue> Ops; for (unsigned i = 0; i < Use->getNumOperands(); ++i) { Ops.push_back(Use->getOperand(i)); } if (!Use->isMachineOpcode()) { if (ImmReg == AMDGPU::ALU_LITERAL_X) { // We can only use literal constants (e.g. AMDGPU::ZERO, // AMDGPU::ONE, etc) in machine opcodes. continue; } } else { if (!TII->isALUInstr(Use->getMachineOpcode()) || (TII->get(Use->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR)) { continue; } int ImmIdx = TII->getOperandIdx(Use->getMachineOpcode(), AMDGPU::OpName::literal); if (ImmIdx == -1) { continue; } if (TII->getOperandIdx(Use->getMachineOpcode(), AMDGPU::OpName::dst) != -1) { // subtract one from ImmIdx, because the DST operand is usually index // 0 for MachineInstrs, but we have no DST in the Ops vector. ImmIdx--; } // Check that we aren't already using an immediate. // XXX: It's possible for an instruction to have more than one // immediate operand, but this is not supported yet. if (ImmReg == AMDGPU::ALU_LITERAL_X) { ConstantSDNode *C = dyn_cast<ConstantSDNode>(Use->getOperand(ImmIdx)); assert(C); if (C->getZExtValue() != 0) { // This instruction is already using an immediate. continue; } // Set the immediate value Ops[ImmIdx] = CurDAG->getTargetConstant(ImmValue, MVT::i32); } } // Set the immediate register Ops[Use.getOperandNo()] = CurDAG->getRegister(ImmReg, MVT::i32); CurDAG->UpdateNodeOperands(*Use, Ops.data(), Use->getNumOperands()); } break; } } SDNode *Result = SelectCode(N); // Fold operands of selected node const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(TM.getInstrInfo()); if (Result && Result->isMachineOpcode() && Result->getMachineOpcode() == AMDGPU::DOT_4) { bool IsModified = false; do { std::vector<SDValue> Ops; for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end(); I != E; ++I) Ops.push_back(*I); IsModified = FoldDotOperands(Result->getMachineOpcode(), TII, Ops); if (IsModified) { Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size()); } } while (IsModified); } if (Result && Result->isMachineOpcode() && !(TII->get(Result->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR) && TII->hasInstrModifiers(Result->getMachineOpcode())) { // Fold FNEG/FABS // TODO: Isel can generate multiple MachineInst, we need to recursively // parse Result bool IsModified = false; do { std::vector<SDValue> Ops; for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end(); I != E; ++I) Ops.push_back(*I); IsModified = FoldOperands(Result->getMachineOpcode(), TII, Ops); if (IsModified) { Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size()); } } while (IsModified); // If node has a single use which is CLAMP_R600, folds it if (Result->hasOneUse() && Result->isMachineOpcode()) { SDNode *PotentialClamp = *Result->use_begin(); if (PotentialClamp->isMachineOpcode() && PotentialClamp->getMachineOpcode() == AMDGPU::CLAMP_R600) { unsigned ClampIdx = TII->getOperandIdx(Result->getMachineOpcode(), AMDGPU::OpName::clamp); std::vector<SDValue> Ops; unsigned NumOp = Result->getNumOperands(); for (unsigned i = 0; i < NumOp; ++i) { Ops.push_back(Result->getOperand(i)); } Ops[ClampIdx - 1] = CurDAG->getTargetConstant(1, MVT::i32); Result = CurDAG->SelectNodeTo(PotentialClamp, Result->getMachineOpcode(), PotentialClamp->getVTList(), Ops.data(), NumOp); } } } } return Result; }
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { return NULL; // Already selected. } switch (Opc) { default: break; case ISD::BUILD_VECTOR: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.device()->getGeneration() > AMDGPUDeviceInfo::HD6XXX) { break; } // BUILD_VECTOR is usually lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. SDValue RegSeqArgs[9] = { CurDAG->getTargetConstant(AMDGPU::R600_Reg128RegClassID, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub2, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub3, MVT::i32) }; bool IsRegSeq = true; for (unsigned i = 0; i < N->getNumOperands(); i++) { if (dyn_cast<RegisterSDNode>(N->getOperand(i))) { IsRegSeq = false; break; } RegSeqArgs[2 * i + 1] = N->getOperand(i); } if (!IsRegSeq) break; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs, 2 * N->getNumOperands() + 1); } case ISD::ConstantFP: case ISD::Constant: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); // XXX: Custom immediate lowering not implemented yet. Instead we use // pseudo instructions defined in SIInstructions.td if (ST.device()->getGeneration() > AMDGPUDeviceInfo::HD6XXX) { break; } const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(TM.getInstrInfo()); uint64_t ImmValue = 0; unsigned ImmReg = AMDGPU::ALU_LITERAL_X; if (N->getOpcode() == ISD::ConstantFP) { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::f64); ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N); APFloat Value = C->getValueAPF(); float FloatValue = Value.convertToFloat(); if (FloatValue == 0.0) { ImmReg = AMDGPU::ZERO; } else if (FloatValue == 0.5) { ImmReg = AMDGPU::HALF; } else if (FloatValue == 1.0) { ImmReg = AMDGPU::ONE; } else { ImmValue = Value.bitcastToAPInt().getZExtValue(); } } else { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::i64); ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); if (C->getZExtValue() == 0) { ImmReg = AMDGPU::ZERO; } else if (C->getZExtValue() == 1) { ImmReg = AMDGPU::ONE_INT; } else { ImmValue = C->getZExtValue(); } } for (SDNode::use_iterator Use = N->use_begin(), Next = llvm::next(Use); Use != SDNode::use_end(); Use = Next) { Next = llvm::next(Use); std::vector<SDValue> Ops; for (unsigned i = 0; i < Use->getNumOperands(); ++i) { Ops.push_back(Use->getOperand(i)); } if (!Use->isMachineOpcode()) { if (ImmReg == AMDGPU::ALU_LITERAL_X) { // We can only use literal constants (e.g. AMDGPU::ZERO, // AMDGPU::ONE, etc) in machine opcodes. continue; } } else { if (!TII->isALUInstr(Use->getMachineOpcode()) || (TII->get(Use->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR)) { continue; } int ImmIdx = TII->getOperandIdx(Use->getMachineOpcode(), R600Operands::IMM); assert(ImmIdx != -1); // subtract one from ImmIdx, because the DST operand is usually index // 0 for MachineInstrs, but we have no DST in the Ops vector. ImmIdx--; // Check that we aren't already using an immediate. // XXX: It's possible for an instruction to have more than one // immediate operand, but this is not supported yet. if (ImmReg == AMDGPU::ALU_LITERAL_X) { ConstantSDNode *C = dyn_cast<ConstantSDNode>(Use->getOperand(ImmIdx)); assert(C); if (C->getZExtValue() != 0) { // This instruction is already using an immediate. continue; } // Set the immediate value Ops[ImmIdx] = CurDAG->getTargetConstant(ImmValue, MVT::i32); } } // Set the immediate register Ops[Use.getOperandNo()] = CurDAG->getRegister(ImmReg, MVT::i32); CurDAG->UpdateNodeOperands(*Use, Ops.data(), Use->getNumOperands()); } break; } } SDNode *Result = SelectCode(N); // Fold operands of selected node const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX) { const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(TM.getInstrInfo()); if (Result && Result->isMachineOpcode() && !(TII->get(Result->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR) && TII->isALUInstr(Result->getMachineOpcode())) { // Fold FNEG/FABS/CONST_ADDRESS // TODO: Isel can generate multiple MachineInst, we need to recursively // parse Result bool IsModified = false; do { std::vector<SDValue> Ops; for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end(); I != E; ++I) Ops.push_back(*I); IsModified = FoldOperands(Result->getMachineOpcode(), TII, Ops); if (IsModified) { Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size()); } } while (IsModified); // If node has a single use which is CLAMP_R600, folds it if (Result->hasOneUse() && Result->isMachineOpcode()) { SDNode *PotentialClamp = *Result->use_begin(); if (PotentialClamp->isMachineOpcode() && PotentialClamp->getMachineOpcode() == AMDGPU::CLAMP_R600) { unsigned ClampIdx = TII->getOperandIdx(Result->getMachineOpcode(), R600Operands::CLAMP); std::vector<SDValue> Ops; unsigned NumOp = Result->getNumOperands(); for (unsigned i = 0; i < NumOp; ++i) { Ops.push_back(Result->getOperand(i)); } Ops[ClampIdx - 1] = CurDAG->getTargetConstant(1, MVT::i32); Result = CurDAG->SelectNodeTo(PotentialClamp, Result->getMachineOpcode(), PotentialClamp->getVTList(), Ops.data(), NumOp); } } } } return Result; }
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { return NULL; // Already selected. } switch (Opc) { default: break; case ISD::BUILD_VECTOR: { unsigned RegClassID; const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); const AMDGPURegisterInfo *TRI = static_cast<const AMDGPURegisterInfo*>(TM.getRegisterInfo()); const SIRegisterInfo *SIRI = static_cast<const SIRegisterInfo*>(TM.getRegisterInfo()); EVT VT = N->getValueType(0); unsigned NumVectorElts = VT.getVectorNumElements(); assert(VT.getVectorElementType().bitsEq(MVT::i32)); if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { bool UseVReg = true; for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); U != E; ++U) { if (!U->isMachineOpcode()) { continue; } const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); if (!RC) { continue; } if (SIRI->isSGPRClass(RC)) { UseVReg = false; } } switch(NumVectorElts) { case 1: RegClassID = UseVReg ? AMDGPU::VReg_32RegClassID : AMDGPU::SReg_32RegClassID; break; case 2: RegClassID = UseVReg ? AMDGPU::VReg_64RegClassID : AMDGPU::SReg_64RegClassID; break; case 4: RegClassID = UseVReg ? AMDGPU::VReg_128RegClassID : AMDGPU::SReg_128RegClassID; break; case 8: RegClassID = UseVReg ? AMDGPU::VReg_256RegClassID : AMDGPU::SReg_256RegClassID; break; case 16: RegClassID = UseVReg ? AMDGPU::VReg_512RegClassID : AMDGPU::SReg_512RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } else { // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. switch(NumVectorElts) { case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break; case 4: RegClassID = AMDGPU::R600_Reg128RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } SDValue RegClass = CurDAG->getTargetConstant(RegClassID, MVT::i32); if (NumVectorElts == 1) { return CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, VT.getVectorElementType(), N->getOperand(0), RegClass); } assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not " "supported yet"); // 16 = Max Num Vector Elements // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) // 1 = Vector Register Class SDValue RegSeqArgs[16 * 2 + 1]; RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, MVT::i32); bool IsRegSeq = true; for (unsigned i = 0; i < N->getNumOperands(); i++) { // XXX: Why is this here? if (dyn_cast<RegisterSDNode>(N->getOperand(i))) { IsRegSeq = false; break; } RegSeqArgs[1 + (2 * i)] = N->getOperand(i); RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), MVT::i32); } if (!IsRegSeq) break; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs, 2 * N->getNumOperands() + 1); } case ISD::BUILD_PAIR: { SDValue RC, SubReg0, SubReg1; const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } if (N->getValueType(0) == MVT::i128) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32); } else if (N->getValueType(0) == MVT::i64) { RC = CurDAG->getTargetConstant(AMDGPU::VSrc_64RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32); } else { llvm_unreachable("Unhandled value type for BUILD_PAIR"); } const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, N->getOperand(1), SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SDLoc(N), N->getValueType(0), Ops); } } return SelectCode(N); }