bool State::isConsistent(const SimTK::State& otherState) const { if (getNumSubsystems() != otherState.getNumSubsystems()) return false; // State variables. if (getNQ() != otherState.getNQ()) return false; if (getNU() != otherState.getNU()) return false; if (getNZ() != otherState.getNZ()) return false; // Constraints. if (getNQErr() != otherState.getNQErr()) return false; if (getNUErr() != otherState.getNUErr()) return false; if (getNUDotErr() != otherState.getNUDotErr()) return false; // NMultipliers should be the same as NUDotErr, but we leave this check // here in case they diverge in the future. if (getNMultipliers() != otherState.getNMultipliers()) return false; // Events. if (getNEventTriggers() != otherState.getNEventTriggers()) return false; // Per-subsystem quantities. // TODO we could get rid of the total-over-subsystems checks above, but // those checks would let us exit earlier. for (SimTK::SubsystemIndex isub(0); isub < getNumSubsystems(); ++isub) { if (getNQ(isub) != otherState.getNQ(isub)) return false; if (getNU(isub) != otherState.getNU(isub)) return false; if (getNZ(isub) != otherState.getNZ(isub)) return false; if (getNQErr(isub) != otherState.getNQErr(isub)) return false; if (getNUErr(isub) != otherState.getNUErr(isub)) return false; if (getNUDotErr(isub) != otherState.getNUDotErr(isub)) return false; // NMultipliers should be the same as NUDotErr, but we leave this check // here in case they diverge in the future. if (getNMultipliers(isub) != otherState.getNMultipliers(isub)) return false; for(SimTK::Stage stage = SimTK::Stage::LowestValid; stage <= SimTK::Stage::HighestRuntime; ++stage) { if (getNEventTriggersByStage(isub, stage) != otherState.getNEventTriggersByStage(isub, stage)) return false; } } return true; }
void compareSimulations(SimTK::MultibodySystem &system, SimTK::State &state, Model *osimModel, SimTK::State &osim_state, string errorMessagePrefix = "") { using namespace SimTK; // Set the initial states for both Simbody system and OpenSim model Vector& qi = state.updQ(); Vector& ui = state.updU(); int nq_sb = initTestStates(qi, ui); int nq = osim_state.getNQ(); // Push down to OpenSim "state" if(nq == 2*nq_sb){ //more coordinates because OpenSim model is constrained osim_state.updY()[0] = state.getY()[0]; osim_state.updY()[1] = state.getY()[1]; osim_state.updY()[nq] = state.getY()[nq_sb]; osim_state.updY()[nq+1] = state.getY()[nq_sb+1]; } else osim_state.updY() = state.getY(); //========================================================================================================== // Integrate Simbody system integrateSimbodySystem(system, state); // Simbody model final states qi = state.updQ(); ui = state.updU(); qi.dump("\nSimbody Final q's:"); ui.dump("\nSimbody Final u's:"); //========================================================================================================== // Integrate OpenSim model integrateOpenSimModel(osimModel, osim_state); // Get the state at the end of the integration from OpenSim. Vector& qf = osim_state.updQ(); Vector& uf = osim_state.updU(); cout<<"\nOpenSim Final q's:\n "<<qf<<endl; cout<<"\nOpenSim Final u's:\n "<<uf<<endl; //========================================================================================================== // Compare Simulation Results compareSimulationStates(qi, ui, qf, uf, errorMessagePrefix); }