TEUCHOS_UNIT_TEST(tIterativePreconditionerFactory, inverse_test) { // build global (or serial communicator) #ifdef HAVE_MPI Epetra_MpiComm Comm(MPI_COMM_WORLD); #else Epetra_SerialComm Comm; #endif Teko::LinearOp A = build2x2(Comm,1,2,3,4); RCP<Teko::InverseLibrary> invLib = Teko::InverseLibrary::buildFromStratimikos(); RCP<Teko::InverseFactory> invFact = invLib->getInverseFactory("Amesos"); Teko::LinearOp iP = Teko::buildInverse(*invFact,A); Thyra::LinearOpTester<double> tester; tester.dump_all(true); tester.show_all_tests(true); { RCP<Teko::InverseFactory> precOpFact = rcp(new Teko::StaticOpInverseFactory(iP)); RCP<Teko::IterativePreconditionerFactory> precFact = rcp(new Teko::IterativePreconditionerFactory(9,precOpFact)); RCP<Teko::InverseFactory> invFact = rcp(new Teko::PreconditionerInverseFactory(precFact,Teuchos::null)); Teko::LinearOp prec = Teko::buildInverse(*invFact,A); const bool result = tester.compare( *prec, *iP, Teuchos::ptrFromRef(out)); if (!result) { out << "Apply 0: FAILURE" << std::endl; success = false; } else out << "Apply 0: SUCCESS" << std::endl; } }
TEUCHOS_UNIT_TEST(assembly_engine, z_basic_epetra_vtpetra) { TEUCHOS_ASSERT(tLinearOp!=Teuchos::null); TEUCHOS_ASSERT(eLinearOp!=Teuchos::null); TEUCHOS_ASSERT(tVector!=Teuchos::null); TEUCHOS_ASSERT(eVector!=Teuchos::null); Thyra::LinearOpTester<double> tester; tester.set_all_error_tol(1e-14); tester.show_all_tests(true); tester.dump_all(true); tester.num_random_vectors(200); { const bool result = tester.compare( *tLinearOp, *eLinearOp, Teuchos::ptrFromRef(out) ); TEST_ASSERT(result); } { const bool result = Thyra::testRelNormDiffErr( "Tpetra",*tVector, "Epetra",*eVector, "linear_properties_error_tol()", 1e-14, "linear_properties_warning_tol()", 1e-14, &out); TEST_ASSERT(result); } }
TEUCHOS_UNIT_TEST(tLU2x2InverseOp, exact_test_tpetra) { Kokkos::initialize(); // build global (or serial communicator) RCP<const Teuchos::Comm<int> > Comm = Tpetra::DefaultPlatform::getDefaultPlatform ().getComm (); Teko::LinearOp A_00 = build2x2(Comm,1,2,3,4); Teko::LinearOp A_01 = build2x2(Comm,5,6,7,8); Teko::LinearOp A_02 = build2x2(Comm,9,10,11,12); Teko::LinearOp A_10 = build2x2(Comm,9,10,11,12); Teko::LinearOp A_11 = build2x2(Comm,-13,-14,-15,-16); Teko::LinearOp A_12 = build2x2(Comm,-1,-4,-5,-6); Teko::LinearOp A_20 = build2x2(Comm,-9,-10,-11,-12); Teko::LinearOp A_21 = build2x2(Comm,13,14,15,16); Teko::LinearOp A_22 = build2x2(Comm,1,4,5,6); Teko::BlockedLinearOp A = Teko::createBlockedOp(); Teko::beginBlockFill(A,3,3); Teko::setBlock(0,0,A,A_00); Teko::setBlock(0,1,A,A_01); Teko::setBlock(0,2,A,A_02); Teko::setBlock(1,0,A,A_10); Teko::setBlock(1,1,A,A_11); Teko::setBlock(1,2,A,A_12); Teko::setBlock(2,0,A,A_20); Teko::setBlock(2,1,A,A_21); Teko::setBlock(2,2,A,A_22); Teko::endBlockFill(A); std::string reorderType = "[ [0 1] 2]"; Teuchos::RCP<const Teko::BlockReorderManager> brm = Teko::blockedReorderFromString(reorderType); Teko::ModifiableLinearOp re_A = Teuchos::rcp_const_cast<Thyra::LinearOpBase<double> >(Teko::buildReorderedLinearOp(*brm,A)); Teko::ModifiableLinearOp final_A = Teuchos::rcp(new Teko::ReorderedLinearOp(brm,re_A)); Thyra::LinearOpTester<double> tester; tester.dump_all(true); tester.show_all_tests(true); { const bool result = tester.compare( *final_A, *A, Teuchos::ptrFromRef(out)); if (!result) { out << "Apply: FAILURE" << std::endl; success = false; } else out << "Apply: SUCCESS" << std::endl; } Kokkos::finalize(); }
TEUCHOS_UNIT_TEST(tLU2x2InverseOp, exact_test) { // build global (or serial communicator) #ifdef HAVE_MPI Epetra_MpiComm Comm(MPI_COMM_WORLD); #else Epetra_SerialComm Comm; #endif Teko::LinearOp A_00 = build2x2(Comm,1,2,3,4); Teko::LinearOp A_01 = build2x2(Comm,5,6,7,8); Teko::LinearOp A_10 = build2x2(Comm,9,10,11,12); Teko::LinearOp A_11 = build2x2(Comm,-13,-14,-15,-16); Teko::BlockedLinearOp A = Teko::toBlockedLinearOp(Thyra::block2x2(A_00,A_01,A_10,A_11)); Teko::LinearOp S = build2x2(Comm,26.000000000000000, 28.000000000000004, 30.000000000000000, 32.000000000000000); Teko::LinearOp iA_00 = build2x2(Comm,-1.000000000000000, 0.500000000000000, 0.749999999999998, -0.249999999999998); Teko::LinearOp iA_01 = build2x2(Comm,-3.000000000000004, 2.500000000000003, 2.750000000000008, -2.250000000000007); Teko::LinearOp iA_10 = build2x2(Comm,-1.999999999999999, 1.499999999999999, 1.749999999999999, -1.249999999999999); Teko::LinearOp iA_11 = build2x2(Comm, 4.000000000000001, -3.500000000000001, -3.750000000000001, 3.250000000000001); Teko::LinearOp iA = Thyra::block2x2(iA_00,iA_01,iA_10,iA_11); Thyra::LinearOpTester<double> tester; tester.dump_all(true); tester.show_all_tests(true); { RCP<Teko::InverseLibrary> invLib = Teko::InverseLibrary::buildFromStratimikos(); RCP<Teko::InverseFactory> invFact = invLib->getInverseFactory("Amesos"); Teko::LinearOp invA_00 = Teko::buildInverse(*invFact,A_00); Teko::LinearOp invS = Teko::buildInverse(*invFact,S); Teko::LinearOp invA = Teko::createLU2x2InverseOp(A,invA_00,invA_00,invS,"Approximation"); const bool result = tester.compare( *invA, *iA, &out); if (!result) { out << "Apply: FAILURE" << std::endl; success = false; } else out << "Apply: SUCCESS" << std::endl; } }
TEUCHOS_UNIT_TEST(tProbingFactory, invlib_constr) { // build global (or serial communicator) #ifdef HAVE_MPI Epetra_MpiComm Comm(MPI_COMM_WORLD); #else Epetra_SerialComm Comm; #endif Teko::LinearOp lo = buildSystem(Comm,10); Teuchos::ParameterList subList; subList.set("Type","Probing Preconditioner"); subList.set("Inverse Type","Amesos"); subList.set("Probing Graph Operator",lo); Teuchos::ParameterList pl; pl.set("Prober",subList); Teuchos::RCP<Teko::InverseLibrary> invLib = Teko::InverseLibrary::buildFromParameterList(pl); Teuchos::RCP<Teko::InverseFactory> proberFactory = invLib->getInverseFactory("Prober"); Teuchos::RCP<Teko::InverseFactory> directSolveFactory = invLib->getInverseFactory("Amesos"); { Teko::LinearOp probedInverse = Teko::buildInverse(*proberFactory,lo); Teko::LinearOp invLo = Teko::buildInverse(*directSolveFactory,lo); Thyra::LinearOpTester<double> tester; tester.dump_all(true); tester.show_all_tests(true); { const bool result = tester.compare( *probedInverse, *invLo, &out); if (!result) { out << "Apply: FAILURE" << std::endl; success = false; } else out << "Apply: SUCCESS" << std::endl; } } }
TEUCHOS_UNIT_TEST(assembly_engine, z_basic_epetra_vtpetra) { PHX::InitializeKokkosDevice(); TEUCHOS_ASSERT(tLinearOp!=Teuchos::null); TEUCHOS_ASSERT(eLinearOp!=Teuchos::null); TEUCHOS_ASSERT(tVector!=Teuchos::null); TEUCHOS_ASSERT(eVector!=Teuchos::null); Thyra::LinearOpTester<double> tester; tester.set_all_error_tol(1e-14); tester.show_all_tests(true); tester.dump_all(true); tester.num_random_vectors(200); { const bool result = tester.compare( *tLinearOp, *eLinearOp, Teuchos::ptrFromRef(out) ); TEST_ASSERT(result); } { const bool result = Thyra::testRelNormDiffErr( "Tpetra",*tVector, "Epetra",*eVector, "linear_properties_error_tol()", 1e-14, "linear_properties_warning_tol()", 1e-14, &out); TEST_ASSERT(result); } // Need to kill global objects so that memory leaks on kokkos ref // count pointing doesn't trigger test failure. eLinearOp = Teuchos::null; tLinearOp = Teuchos::null; eVector = Teuchos::null; tVector = Teuchos::null; PHX::FinalizeKokkosDevice(); }
TEUCHOS_UNIT_TEST_TEMPLATE_1_DECL( SimpleDenseLinearOp, basic, Scalar ) { using Teuchos::rcp_dynamic_cast; typedef ScalarTraits<Scalar> ST; const RCP<MultiVectorBase<Scalar> > mv = createSerialMultiVector<Scalar>(g_dim, g_dim/2, ST::one()); const RCP<LinearOpBase<Scalar> > op = createNonconstSimpleDenseLinearOp<Scalar>(mv); TEST_EQUALITY( mv, rcp_dynamic_cast<SimpleDenseLinearOp<Scalar> >(op)->getNonconstMultiVector() ); Thyra::LinearOpTester<Scalar> linearOpTester; linearOpTester.dump_all(g_dumpAll); TEST_ASSERT(linearOpTester.check(*op, ptrFromRef(out))); }
TEUCHOS_UNIT_TEST(tProbingFactory, basic_test) { // build global (or serial communicator) #ifdef HAVE_MPI Epetra_MpiComm Comm(MPI_COMM_WORLD); #else Epetra_SerialComm Comm; #endif Teko::LinearOp lo = buildSystem(Comm,10); Teuchos::RCP<Teko::InverseLibrary> invLib = Teko::InverseLibrary::buildFromStratimikos(); Teuchos::RCP<Teko::InverseFactory> directSolveFactory = invLib->getInverseFactory("Amesos"); Teuchos::RCP<Teko::ProbingPreconditionerFactory> probeFact = rcp(new Teko::ProbingPreconditionerFactory); probeFact->setGraphOperator(lo); probeFact->setInverseFactory(directSolveFactory); RCP<Teko::InverseFactory> invFact = Teuchos::rcp(new Teko::PreconditionerInverseFactory(probeFact,Teuchos::null)); Teko::LinearOp probedInverse = Teko::buildInverse(*invFact,lo); Teko::LinearOp invLo = Teko::buildInverse(*directSolveFactory,lo); Thyra::LinearOpTester<double> tester; tester.dump_all(true); tester.show_all_tests(true); { const bool result = tester.compare( *probedInverse, *invLo, &out); if (!result) { out << "Apply: FAILURE" << std::endl; success = false; } else out << "Apply: SUCCESS" << std::endl; } }
bool run_composite_linear_ops_tests( const Teuchos::RCP<const Teuchos::Comm<Thyra::Ordinal> > comm, const int n, const bool useSpmd, const typename Teuchos::ScalarTraits<Scalar>::magnitudeType &tol, const bool dumpAll, Teuchos::FancyOStream *out_arg ) { using Teuchos::as; typedef Teuchos::ScalarTraits<Scalar> ST; typedef typename ST::magnitudeType ScalarMag; typedef Teuchos::ScalarTraits<ScalarMag> STM; using Teuchos::RCP; using Teuchos::rcp; using Teuchos::null; using Teuchos::rcp_const_cast; using Teuchos::rcp_dynamic_cast; using Teuchos::dyn_cast; using Teuchos::OSTab; using Thyra::relErr; using Thyra::passfail; RCP<Teuchos::FancyOStream> out = rcp(new Teuchos::FancyOStream(rcp(out_arg,false))); const Teuchos::EVerbosityLevel verbLevel = dumpAll?Teuchos::VERB_EXTREME:Teuchos::VERB_HIGH; if (nonnull(out)) *out << "\n*** Entering run_composite_linear_ops_tests<"<<ST::name()<<">(...) ...\n"; bool success = true, result; const ScalarMag warning_tol = ScalarMag(1e-2)*tol, error_tol = tol; Thyra::LinearOpTester<Scalar> linearOpTester; linearOpTester.linear_properties_warning_tol(warning_tol); linearOpTester.linear_properties_error_tol(error_tol); linearOpTester.adjoint_warning_tol(warning_tol); linearOpTester.adjoint_error_tol(error_tol); linearOpTester.dump_all(dumpAll); Thyra::LinearOpTester<Scalar> symLinearOpTester(linearOpTester); symLinearOpTester.check_for_symmetry(true); symLinearOpTester.symmetry_warning_tol(STM::squareroot(warning_tol)); symLinearOpTester.symmetry_error_tol(STM::squareroot(error_tol)); RCP<const Thyra::VectorSpaceBase<Scalar> > space; if(useSpmd) space = Thyra::defaultSpmdVectorSpace<Scalar>(comm,n,-1); else space = Thyra::defaultSpmdVectorSpace<Scalar>(n); if (nonnull(out)) *out << "\nUsing a basic vector space described as " << describe(*space,verbLevel) << " ...\n"; if (nonnull(out)) *out << "\nCreating random n x (n/2) multi-vector origA ...\n"; RCP<Thyra::MultiVectorBase<Scalar> > mvOrigA = createMembers(space,n/2,"origA"); Thyra::seed_randomize<Scalar>(0); //RTOpPack::show_spmd_apply_op_dump = true; Thyra::randomize( as<Scalar>(as<Scalar>(-1)*ST::one()), as<Scalar>(as<Scalar>(+1)*ST::one()), mvOrigA.ptr() ); RCP<const Thyra::LinearOpBase<Scalar> > origA = mvOrigA; if (nonnull(out)) *out << "\norigA =\n" << describe(*origA,verbLevel); //RTOpPack::show_spmd_apply_op_dump = false; if (nonnull(out)) *out << "\nTesting origA ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.check(*origA, out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nCreating implicit scaled linear operator A1 = scale(0.5,origA) ...\n"; RCP<const Thyra::LinearOpBase<Scalar> > A1 = scale(as<Scalar>(0.5),origA); if (nonnull(out)) *out << "\nA1 =\n" << describe(*A1,verbLevel); if (nonnull(out)) *out << "\nTesting A1 ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.check(*A1,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nTesting that A1.getOp() == origA ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.compare( *dyn_cast<const Thyra::DefaultScaledAdjointLinearOp<Scalar> >(*A1).getOp(), *origA,out.ptr()); if(!result) success = false; { if (nonnull(out)) *out << "\nUnwrapping origA to get non-persisting pointer to origA_1, scalar and transp ...\n"; Scalar scalar; Thyra::EOpTransp transp; const Thyra::LinearOpBase<Scalar> *origA_1 = NULL; unwrap( *origA, &scalar, &transp, &origA_1 ); TEUCHOS_TEST_FOR_EXCEPT( origA_1 == NULL ); if (nonnull(out)) *out << "\nscalar = " << scalar << " == 1 ? "; result = (scalar == ST::one()); if(!result) success = false; if (nonnull(out)) *out << passfail(result) << std::endl; if (nonnull(out)) *out << "\ntransp = " << toString(transp) << " == NOTRANS ? "; result = (transp == Thyra::NOTRANS); if(!result) success = false; if (nonnull(out)) *out << passfail(result) << std::endl; if (nonnull(out)) *out << "\nTesting that origA_1 == origA ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.compare(*origA_1,*origA,out.ptr()); if(!result) success = false; } { if (nonnull(out)) *out << "\nUnwrapping A1 to get non-persisting pointer to origA_2 ...\n"; Scalar scalar; Thyra::EOpTransp transp; const Thyra::LinearOpBase<Scalar> *origA_2 = NULL; unwrap( *A1, &scalar, &transp, &origA_2 ); TEUCHOS_TEST_FOR_EXCEPT( origA_2 == NULL ); if (nonnull(out)) *out << "\nscalar = " << scalar << " == 0.5 ? "; result = (scalar == as<Scalar>(0.5)); if(!result) success = false; if (nonnull(out)) *out << passfail(result) << std::endl; if (nonnull(out)) *out << "\ntransp = " << toString(transp) << " == NOTRANS ? "; result = (transp == Thyra::NOTRANS); if(!result) success = false; if (nonnull(out)) *out << passfail(result) << std::endl; if (nonnull(out)) *out << "\nTesting that origA_2 == origA ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.compare(*origA_2,*origA,out.ptr()); if(!result) success = false; } if (nonnull(out)) *out << "\nCreating implicit scaled linear operator A2 = adjoint(A1) ...\n"; RCP<const Thyra::LinearOpBase<Scalar> > A2 = adjoint(A1); if (nonnull(out)) *out << "\nA2 =\n" << describe(*A2,verbLevel); if (nonnull(out)) *out << "\nTesting A2 ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.check(*A2,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nTesting that A2.getOp() == A1 ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.compare(*dyn_cast<const Thyra::DefaultScaledAdjointLinearOp<Scalar> >(*A2).getOp(),*A1,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nCreating implicit scaled, adjoined linear operator A3 = adjoint(scale(2.0,(A2)) ...\n"; RCP<const Thyra::LinearOpBase<Scalar> > A3 = adjoint(scale(as<Scalar>(2.0),A2)); if (nonnull(out)) *out << "\nA3 =\n" << describe(*A3,verbLevel); if (nonnull(out)) *out << "\nTesting A3 ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.check(*A3,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nTesting that A3 == origA ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.compare(*A3,*origA,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nCalling all of the rest of the functions for non-const just to test them ...\n"; RCP<Thyra::LinearOpBase<Scalar> > A4 = nonconstScale( as<Scalar>(0.25) ,nonconstAdjoint( nonconstTranspose( nonconstAdjoint( nonconstScaleAndAdjoint( as<Scalar>(4.0) ,Thyra::TRANS ,Teuchos::rcp_const_cast<Thyra::LinearOpBase<Scalar> >(origA) ) ) ) ) ); if(!ST::isComplex) A4 = nonconstTranspose(nonconstAdjoint(A4)); // Should result in CONJ if (nonnull(out)) *out << "\nA4 =\n" << describe(*A4,verbLevel); if (nonnull(out)) *out << "\nTesting A4 ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.check(*A4,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nCalling all of the rest of the functions for const just to test them ...\n"; RCP<const Thyra::LinearOpBase<Scalar> > A5 = scale( as<Scalar>(0.25) ,adjoint( transpose( adjoint( scaleAndAdjoint( as<Scalar>(4.0) ,Thyra::TRANS ,origA ) ) ) ) ); if(!ST::isComplex) A5 = transpose(adjoint(A5)); // Should result in CONJ if (nonnull(out)) *out << "\nA5 =\n" << describe(*A5,verbLevel); if (nonnull(out)) *out << "\nTesting A5 ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.check(*A5,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nCreating a multiplied operator A6 = origA^H*A1 ...\n"; RCP<const Thyra::LinearOpBase<Scalar> > A6 = multiply(adjoint(origA),A1); if (nonnull(out)) *out << "\nA6 =\n" << describe(*A6,verbLevel); if (nonnull(out)) *out << "\nTesting A6 ...\n"; Thyra::seed_randomize<Scalar>(0); result = symLinearOpTester.check(*A6,out.ptr()); if(!result) success = false; // Note that testing the symmetry above helps to check the transpose mode // against the non-transpose mode! #ifdef TEUCHOS_DEBUG if (nonnull(out)) *out << "\nCreating an invalid multiplied operator A6b = origA*origA (should throw an exception) ...\n\n"; try { RCP<const Thyra::LinearOpBase<Scalar> > A6b = multiply(origA,origA); result = true; } TEUCHOS_STANDARD_CATCH_STATEMENTS(true,out.get()?*out:std::cerr,result) if (nonnull(out)) *out << "\nCaught expected exception : " << (result?"failed\n":"passed\n"); if(result) success = false; #endif // TEUCHOS_DEBUG if (nonnull(out)) *out << "\nCreating a non-const multiplied operator A7 = origA^H*A1 ...\n"; RCP<Thyra::LinearOpBase<Scalar> > A7 = nonconstMultiply( rcp_const_cast<Thyra::LinearOpBase<Scalar> >(adjoint(origA)) ,rcp_const_cast<Thyra::LinearOpBase<Scalar> >(A1) ); if (nonnull(out)) *out << "\nA7 =\n" << describe(*A7,verbLevel); if (nonnull(out)) *out << "\nTesting A7 ...\n"; Thyra::seed_randomize<Scalar>(0); result = symLinearOpTester.check(*A7,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nCreating an added operator A8 = origA + A1 ...\n"; RCP<const Thyra::LinearOpBase<Scalar> > A8 = add(origA,A1); if (nonnull(out)) *out << "\nA8 =\n" << describe(*A8,verbLevel); if (nonnull(out)) *out << "\nTesting A8 ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.check(*A8,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nCreating a symmetric subtracted operator A8b = A6 + adjoint(origA)*origA ...\n"; RCP<const Thyra::LinearOpBase<Scalar> > A8b = subtract(A6,multiply(adjoint(origA),origA)); if (nonnull(out)) *out << "\nA8b =\n" << describe(*A8b,verbLevel); if (nonnull(out)) *out << "\nTesting A8b ...\n"; Thyra::seed_randomize<Scalar>(0); result = symLinearOpTester.check(*A8b,out.ptr()); if(!result) success = false; #ifdef TEUCHOS_DEBUG if (nonnull(out)) *out << "\nCreating an invalid added operator A8c = origA + adjoint(origA) (should throw an exception) ...\n\n"; try { RCP<const Thyra::LinearOpBase<Scalar> > A8c = add(origA,adjoint(origA)); result = true; } TEUCHOS_STANDARD_CATCH_STATEMENTS(true,out.get()?*out:std::cerr,result) if (nonnull(out)) *out << "\nCaught expected exception : " << (result?"failed\n":"passed\n"); if(result) success = false; #endif // TEUCHOS_DEBUG RCP<const Thyra::LinearOpBase<Scalar> > nullOp = null; if (nonnull(out)) *out << "\nCreating a blocked 2x2 linear operator A9 = [ A6, A1^H; A1, null ] ...\n"; RCP<const Thyra::LinearOpBase<Scalar> > A9 = Thyra::block2x2<Scalar>( A6, adjoint(A1) ,A1, nullOp ); if (nonnull(out)) *out << "\nA9 =\n" << describe(*A9,verbLevel); if (nonnull(out)) *out << "\nTesting A9 ...\n"; Thyra::seed_randomize<Scalar>(0); result = symLinearOpTester.check(*A9,out.ptr()); if(!result) success = false; // Note that testing the symmetry above helps to check the transpose mode // against the non-transpose mode! if (nonnull(out)) *out << "\nCreating a blocked 2x2 linear operator A9_a = [ A6, A1^H; A1, null ] using pre-formed range and domain product spaces ...\n"; RCP<Thyra::PhysicallyBlockedLinearOpBase<Scalar> > A9_a = rcp(new Thyra::DefaultBlockedLinearOp<Scalar>()); A9_a->beginBlockFill( rcp_dynamic_cast<const Thyra::BlockedLinearOpBase<Scalar> >(A9,true)->productRange() ,rcp_dynamic_cast<const Thyra::BlockedLinearOpBase<Scalar> >(A9,true)->productDomain() ); A9_a->setBlock(0,0,A6); A9_a->setBlock(0,1,adjoint(A1)); A9_a->setBlock(1,0,A1); A9_a->endBlockFill(); if (nonnull(out)) *out << "\nA9_a =\n" << describe(*A9_a,verbLevel); if (nonnull(out)) *out << "\nTesting A9_a ...\n"; Thyra::seed_randomize<Scalar>(0); result = symLinearOpTester.check(*A9_a,out.ptr()); if(!result) success = false; // Note that testing the symmetry above helps to check the transpose mode // against the non-transpose mode! if (nonnull(out)) *out << "\nComparing A9 == A9_a ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.compare(*A9,*A9_a,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nCreating a blocked 2x2 linear operator A9_b = [ A6, A1^H; A1, null ] using flexible fill ...\n"; RCP<Thyra::PhysicallyBlockedLinearOpBase<Scalar> > A9_b = rcp(new Thyra::DefaultBlockedLinearOp<Scalar>()); A9_b->beginBlockFill(); A9_b->setBlock(0,0,A6); A9_b->setBlock(0,1,adjoint(A1)); A9_b->setBlock(1,0,A1); A9_b->endBlockFill(); if (nonnull(out)) *out << "\nA9_b =\n" << describe(*A9_b,verbLevel); if (nonnull(out)) *out << "\nTesting A9_b ...\n"; Thyra::seed_randomize<Scalar>(0); result = symLinearOpTester.check(*A9_b,out.ptr()); if(!result) success = false; // Note that testing the symmetry above helps to check the transpose mode // against the non-transpose mode! if (nonnull(out)) *out << "\nComparing A9 == A9_b ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.compare(*A9,*A9_b,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nCreating a blocked 2x2 linear operator A9a = [ null, A1^H; A1, null ] ...\n"; RCP<const Thyra::LinearOpBase<Scalar> > A9a = Thyra::block2x2<Scalar>( nullOp, adjoint(A1), A1, nullOp ); if (nonnull(out)) *out << "\nA9a =\n" << describe(*A9a,verbLevel); if (nonnull(out)) *out << "\nTesting A9a ...\n"; Thyra::seed_randomize<Scalar>(0); result = symLinearOpTester.check(*A9a,out.ptr()); if(!result) success = false; // Note that testing the symmetry above helps to check the transpose mode // against the non-transpose mode! #ifdef TEUCHOS_DEBUG if (nonnull(out)) *out << "\nCreating an invalid blocked 2x2 operator A9b = [ A6, A1^H; A1, A1 ] (should throw an exception) ...\n\n"; try { RCP<const Thyra::LinearOpBase<Scalar> > A9b = Thyra::block2x2<Scalar>( A6, adjoint(A1), A1, A1 ); result = true; } TEUCHOS_STANDARD_CATCH_STATEMENTS(true,out.get()?*out:std::cerr,result) if (nonnull(out)) *out << "\nCaught expected exception : " << (result?"failed\n":"passed\n"); if(result) success = false; #endif // TEUCHOS_DEBUG #ifdef TEUCHOS_DEBUG if (nonnull(out)) *out << "\nCreating an invalid blocked 2x2 operator A9c = [ A1, A1 ; null, null ] (should throw an exception) ...\n\n"; try { RCP<const Thyra::LinearOpBase<Scalar> > A9c = Thyra::block2x2<Scalar>( A1, A1, nullOp, nullOp ); result = true; } TEUCHOS_STANDARD_CATCH_STATEMENTS(true,out.get()?*out:std::cerr,result) if (nonnull(out)) *out << "\nCaught expected exception : " << (result?"failed\n":"passed\n"); if(result) success = false; #endif // TEUCHOS_DEBUG #ifdef TEUCHOS_DEBUG if (nonnull(out)) *out << "\nCreating an invalid blocked 2x2 operator A9d = [ A1, null; A1, null ] (should throw an exception) ...\n\n"; try { RCP<const Thyra::LinearOpBase<Scalar> > A9d = Thyra::block2x2<Scalar>( A1, nullOp, A1, nullOp ); result = true; } TEUCHOS_STANDARD_CATCH_STATEMENTS(true,out.get()?*out:std::cerr,result) if (nonnull(out)) *out << "\nCaught expected exception : " << (result?"failed\n":"passed\n"); if(result) success = false; #endif // TEUCHOS_DEBUG if (nonnull(out)) *out << "\nCreating a blocked 2x1 linear operator A10 = [ A6; A1 ] ...\n"; RCP<const Thyra::LinearOpBase<Scalar> > A10 = Thyra::block2x1<Scalar>( A6, A1 ); if (nonnull(out)) *out << "\nA10 =\n" << describe(*A10,verbLevel); if (nonnull(out)) *out << "\nTesting A10 ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.check(*A10,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nCreating a blocked 1x2 linear operator A11 = [ A9, A10 ] ...\n"; RCP<const Thyra::LinearOpBase<Scalar> > A11 = Thyra::block1x2<Scalar>( A9, A10 ); if (nonnull(out)) *out << "\nA11 =\n" << describe(*A11,verbLevel); if (nonnull(out)) *out << "\nTesting A11 ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.check(*A11,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nCreating a zero linear operator A12 = 0 (range and domain spaces of origA) ...\n"; RCP<const Thyra::LinearOpBase<Scalar> > A12 = Thyra::zero(origA->range(),origA->domain()); if (nonnull(out)) *out << "\nA12 =\n" << describe(*A12,verbLevel); if (nonnull(out)) *out << "\nTesting A12 ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.check(*A12,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nCreating a blocked 2x2 linear operator A13 = [ zero, A1^H; A1, zero ] ...\n"; RCP<const Thyra::LinearOpBase<Scalar> > A13 = Thyra::block2x2<Scalar>( Thyra::zero(A1->domain(),A1->domain()), adjoint(A1), A1, Thyra::zero(A1->range(),A1->range()) ); if (nonnull(out)) *out << "\nA13 =\n" << describe(*A13,verbLevel); if (nonnull(out)) *out << "\nComparing A9a == A13 ...\n"; Thyra::seed_randomize<Scalar>(0); result = linearOpTester.compare(*A9a,*A13,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\nCreating a zero linear operator A14 = I (range space of origA) ...\n"; RCP<const Thyra::LinearOpBase<Scalar> > A14 = Thyra::identity(origA->range()); if (nonnull(out)) *out << "\nA14 =\n" << describe(*A14,verbLevel); if (nonnull(out)) *out << "\nTesting A14 ...\n"; Thyra::seed_randomize<Scalar>(0); result = symLinearOpTester.check(*A14,out.ptr()); if(!result) success = false; if (nonnull(out)) *out << "\n*** Leaving run_composite_linear_ops_tests<"<<ST::name()<<">(...) ...\n"; return success; } // end run_composite_linear_ops_tests() [Doxygen looks for this!]
int exampleImplicitlyComposedLinearOperators( const int n0, const int n1, const int n2, Teuchos::FancyOStream &out, const Teuchos::EVerbosityLevel verbLevel, typename Teuchos::ScalarTraits<Scalar>::magnitudeType errorTol, const bool testAdjoint ) { // Using and other declarations typedef Teuchos::ScalarTraits<Scalar> ST; using Teuchos::as; using Teuchos::RCP; using Teuchos::OSTab; using Thyra::VectorSpaceBase; using Thyra::VectorBase; using Thyra::MultiVectorBase; using Thyra::LinearOpBase; using Thyra::defaultSpmdVectorSpace; using Thyra::randomize; using Thyra::identity; using Thyra::diagonal; using Thyra::multiply; using Thyra::add; using Thyra::subtract; using Thyra::scale; using Thyra::adjoint; using Thyra::block1x2; using Thyra::block2x2; using Thyra::block2x2; out << "\n***" << "\n*** Demonstrating building linear operators for scalar type " << ST::name() << "\n***\n"; OSTab tab(out); // // A) Set up the basic objects and other inputs to build the implicitly // composed linear operators. // // Create serial vector spaces in this case const RCP<const VectorSpaceBase<Scalar> > space0 = defaultSpmdVectorSpace<Scalar>(n0), space1 = defaultSpmdVectorSpace<Scalar>(n1), space2 = defaultSpmdVectorSpace<Scalar>(n2); // Create the component linear operators first as multi-vectors const RCP<MultiVectorBase<Scalar> > mvA = createMembers(space2, n0, "A"), mvB = createMembers(space0, n2, "B"), mvC = createMembers(space0, n0, "C"), mvE = createMembers(space0, n1, "E"), mvF = createMembers(space0, n1, "F"), mvJ = createMembers(space2, n1, "J"), mvK = createMembers(space1, n2, "K"), mvL = createMembers(space2, n1, "L"), mvN = createMembers(space0, n1, "N"), mvP = createMembers(space2, n1, "P"), mvQ = createMembers(space0, n2, "Q"); // Create the vector diagonal for D const RCP<VectorBase<Scalar> > d = createMember(space2); // Get the constants const Scalar one = 1.0, beta = 2.0, gamma = 3.0, eta = 4.0; // Randomize the values in the Multi-Vector randomize( -one, +one, mvA.ptr() ); randomize( -one, +one, mvB.ptr() ); randomize( -one, +one, mvC.ptr() ); randomize( -one, +one, d.ptr() ); randomize( -one, +one, mvE.ptr() ); randomize( -one, +one, mvF.ptr() ); randomize( -one, +one, mvJ.ptr() ); randomize( -one, +one, mvK.ptr() ); randomize( -one, +one, mvL.ptr() ); randomize( -one, +one, mvN.ptr() ); randomize( -one, +one, mvP.ptr() ); randomize( -one, +one, mvQ.ptr() ); // Get the linear operator forms of the basic component linear operators const RCP<const LinearOpBase<Scalar> > A = mvA, B = mvB, C = mvC, E = mvE, F = mvF, J = mvJ, K = mvK, L = mvL, N = mvN, P = mvP, Q = mvQ; out << describe(*A, verbLevel); out << describe(*B, verbLevel); out << describe(*C, verbLevel); out << describe(*E, verbLevel); out << describe(*F, verbLevel); out << describe(*J, verbLevel); out << describe(*K, verbLevel); out << describe(*L, verbLevel); out << describe(*N, verbLevel); out << describe(*P, verbLevel); out << describe(*Q, verbLevel); // // B) Create the composed linear operators // // I const RCP<const LinearOpBase<Scalar> > I = identity(space1, "I"); // D = diag(d) const RCP<const LinearOpBase<Scalar> > D = diagonal(d, "D"); // M00 = [ gama*B*A + C, E + F ] ^H // [ J^H * A, I ] const RCP<const LinearOpBase<Scalar> > M00 = adjoint( block2x2( add( scale(gamma,multiply(B,A)), C ), add( E, F ), multiply(adjoint(J),A), I ), "M00" ); out << "\nM00 = " << describe(*M00, verbLevel); // M01 = beta * [ Q ] // [ K ] const RCP<const LinearOpBase<Scalar> > M01 = scale( beta, block2x1( Q, K ), "M01" ); out << "\nM01 = " << describe(*M01, verbLevel); // M10 = [ L * N^H, eta*P ] const RCP<const LinearOpBase<Scalar> > M10 = block1x2( multiply(L,adjoint(N)), scale(eta,P), "M10" ); out << "\nM10 = " << describe(*M10, verbLevel); // M11 = D - Q^H*Q const RCP<const LinearOpBase<Scalar> > M11 = subtract( D, multiply(adjoint(Q),Q), "M11" ); out << "\nM11 = " << describe(*M11, verbLevel); // M = [ M00, M01 ] // [ M10, M11 ] const RCP<const LinearOpBase<Scalar> > M = block2x2( M00, M01, M10, M11, "M" ); out << "\nM = " << describe(*M, verbLevel); // // C) Test the final composed operator // Thyra::LinearOpTester<Scalar> linearOpTester; linearOpTester.set_all_error_tol(errorTol); linearOpTester.check_adjoint(testAdjoint); if (as<int>(verbLevel) >= as<int>(Teuchos::VERB_HIGH)) linearOpTester.show_all_tests(true); if (as<int>(verbLevel) >= as<int>(Teuchos::VERB_EXTREME)) linearOpTester.dump_all(true); const bool result = linearOpTester.check(*M,&out); return result; }
TEUCHOS_UNIT_TEST(tProbingFactory, parameterlist_constr) { // build global (or serial communicator) #ifdef HAVE_MPI Epetra_MpiComm Comm(MPI_COMM_WORLD); #else Epetra_SerialComm Comm; #endif Teko::LinearOp lo = buildSystem(Comm,10); Teuchos::RCP<Teko::InverseLibrary> invLib = Teko::InverseLibrary::buildFromStratimikos(); Teuchos::RCP<Teko::InverseFactory> directSolveFactory = invLib->getInverseFactory("Amesos"); { Teuchos::ParameterList pl; pl.set("Inverse Type","Amesos"); pl.set("Probing Graph Operator",lo); Teuchos::RCP<Teko::ProbingPreconditionerFactory> probeFact = rcp(new Teko::ProbingPreconditionerFactory); probeFact->initializeFromParameterList(pl); RCP<Teko::InverseFactory> invFact = Teuchos::rcp(new Teko::PreconditionerInverseFactory(probeFact,Teuchos::null)); Teko::LinearOp probedInverse = Teko::buildInverse(*invFact,lo); Teko::LinearOp invLo = Teko::buildInverse(*directSolveFactory,lo); Thyra::LinearOpTester<double> tester; tester.dump_all(true); tester.show_all_tests(true); { const bool result = tester.compare( *probedInverse, *invLo, &out); if (!result) { out << "Apply: FAILURE" << std::endl; success = false; } else out << "Apply: SUCCESS" << std::endl; } } { Teuchos::RCP<const Epetra_CrsGraph> theGraph = rcpFromRef(rcp_dynamic_cast<const Epetra_CrsMatrix>(Thyra::get_Epetra_Operator(*lo))->Graph()); Teuchos::ParameterList pl; pl.set("Inverse Type","Amesos"); pl.set("Probing Graph",theGraph); Teuchos::RCP<Teko::ProbingPreconditionerFactory> probeFact = rcp(new Teko::ProbingPreconditionerFactory); probeFact->initializeFromParameterList(pl); RCP<Teko::InverseFactory> invFact = Teuchos::rcp(new Teko::PreconditionerInverseFactory(probeFact,Teuchos::null)); Teko::LinearOp probedInverse = Teko::buildInverse(*invFact,lo); Teko::LinearOp invLo = Teko::buildInverse(*directSolveFactory,lo); Thyra::LinearOpTester<double> tester; tester.dump_all(true); tester.show_all_tests(true); { const bool result = tester.compare( *probedInverse, *invLo, &out); if (!result) { out << "Apply: FAILURE" << std::endl; success = false; } else out << "Apply: SUCCESS" << std::endl; } } }